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Abstract

Consumers gather information gradually to help themselves make the purchasing deci-

sion. The increasingly popular privacy regulations have made it harder for firms to track

individuals in real time. Even if a firm can track consumers’ browsing behavior, it is difficult

for the firm to infer whether consumers like the information they see. Without the ability

to track consumer’s valuation evolution about the product, one may think that firms can

only offer a constant price. The major innovation of our paper is to allow the price to be a

function of time rather than the consumer’s current valuation of the product. We find that

constant price is not always optimal for the firm. It can benefit from using non-stationary

pricing strategies. When the search cost is zero, the optimal price is arbitrarily close to a

constant price if the firm is perfectly patient. In contrast, the slope of the optimal price

is bounded from zero if the firm discounts the future. When there is friction in search,

the optimal price is non-stationary, even if the firm is perfectly patient. In particular, the

firm always increases the price over time if the information is too noisy or the search cost

is too high. In other cases where consumers have a stronger incentive to search, the firm

charges an increasing price for consumers with high or low initial valuation, whereas charges

a decreasing price for medium–value consumers.



1 Introduction

It has been widely documented that consumers gather information gradually to help

themselves make the purchasing decision. They can visit the seller’s website to see the prod-

uct description, check reviews on the retailer’s storefront, or search review articles through

search engines. All these search activities help them reduce their uncertainty about the

product’s value, but only partially. Since the seminal paper by Weitzman (1979), many

papers have studied the optimal search strategy when there are multiple alternatives or mul-

tiple attributes of a product (Weitzman, 1979; Wolinsky, 1986; Moscarini and Smith, 2001;

Branco et al., 2012, 2016; Ke et al., 2016; Liu and Dukes, 2016; Ke and Villas-Boas, 2019;

Ke and Lin, 2020; Guo, 2021; Yao, 2023c; Chaimanowong et al., 2023). Recent papers have

started to look at the marketing implications of consumer’s gradual learning activities, in-

cluding information provision policies (Branco et al., 2016; Jerath and Ren, 2021; Ke et al.,

2023; Yao, 2023a), search costs manipulation (Bar-Isaac et al., 2010; Dukes and Liu, 2016),

product line design (Villas-Boas, 2009; Kuksov and Villas-Boas, 2010; Guo and Zhang, 2012;

Liu and Dukes, 2013; Zia and Kuksov, 2023), consumers’ repeat buying and drop–out deci-

sion Chaimanowong and Ke (2022), and advertising (Mayzlin and Shin, 2011). Among the

possible marketing mixes, pricing is one of the most salient and important marketing strate-

gies. Existing studies mainly consider either constant price (Branco et al., 2012) or price

that depends on the current valuation of the consumers (Ning, 2021). In recent years, the

increasingly popular privacy regulations such as GDPR and CCPA have made it harder for

firms to track individuals in real time. Even if a firm can track consumers’ browsing behav-

ior, it is unclear from its perspective how consumers will interpret the information they see.

For example, Tesla may be able to observe that a consumer clicks on an image of the interior

design of the car but may not know whether the consumer likes the large screen on Tesla or

the traditional dashboard. This calls into question whether the firm can track the consumer’s

belief evolution process when the consumer is searching for information. Though empirical
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papers have estimated consumer valuation with consumer search (Kim et al., 2010; Seiler,

2013; Koulayev, 2014; Bronnenberg et al., 2016; Kim et al., 2017), they also use the choice

data for the estimation. In order to adjust the price during consumer search, firms cannot

rely on the eventual choice decision. Furthermore, the empirical literature estimates a single

value for a product per consumer. However, the consumer’s valuation evolves during gradual

learning. There is not enough variation to estimate such dynamic valuation evolution.

Given the difficulty mentioned above, one may think that firms can only offer a constant

price when they cannot track consumers. The last hope for firms is one tool they are equipped

with that can never be banned by regulations - time. The major innovation of our paper is to

allow the price to be a function of time rather than the consumer’s current valuation of the

product. In other words, we explore non-stationary pricing strategies and ask two questions.

First, is constant price always optimal for the firm when it cannot track the consumer’s belief

evolution process? Second, what should the firm do if the constant price is not optimal?

We find that constant price is not always optimal for the firm. It can benefit from

using non-stationary pricing strategies. We prove that a consumer can do almost as well by

approximating any price which is sufficiently slow–moving by linear price if she is sufficiently

myopic, which can be a building block for future research to simplify the strategy space

of non-Markov problems. Given this result, by assuming that the consumer is sufficiently

myopic and the price is linear and varies slowly, we show that, when the search cost is

zero, the optimal price is arbitrarily close to a constant price if the firm is perfectly patient.

In contrast, the slope of the optimal price is bounded from zero if the firm discounts the

future. When there is friction in search (positive search costs), the optimal price is non-

stationary, even if the firm is perfectly patient. In particular, the firm always increases

the price over time if the information is too noisy or the search cost is too high. In other

cases where consumers have a stronger incentive to search, the firm charges an increasing

price for consumers with high or low initial valuation, whereas charges a decreasing price for

medium–value consumers.
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Our contribution is twofold. On the one hand, our paper provides new managerial insights

for the firm by considering non-stationary pricing. The primary goal of marketing is to

reduce the cost and increase the return. Using time as the information source to guide

pricing decisions is essentially free. Firms do not need to invest heavily in the tracking

technology. Hence, all the increased revenue due to non-stationary pricing becomes profit.

It is also immune to privacy regulations. Apple’s iPhone privacy upgrades cost publishers

like Facebook, YouTube, Twitter, and Snap nearly 10 billion in ad revenue in 2021 alone

because the increased privacy restriction limited advertisers’ ability to target consumers.1

Privacy regulations can prevent firms from tracking consumers’ demographic information,

browsing behavior, and other characteristics, but cannot ban the time to which everyone has

access.

Extant research mainly focuses on the economic impact of privacy regulations (Goldfarb

and Tucker, 2011; Conitzer et al., 2012; Campbell et al., 2015; Athey et al., 2017; Goldberg

et al., 2019; Montes et al., 2019; Choi et al., 2020, 2023; Rafieian and Yoganarasimhan,

2021; Choi et al., 2022; Baik and Larson, 2023; Ke and Sudhir, 2023; Ning et al., 2023; Yao,

2023b). We contribute to this stream of literature by studying what firms can do to respond

to such privacy regulations. Not much attention has been paid to this direction. A notable

exception is Bondi et al. (2023), where they study in a different context how media firms can

use content design to aid their inference of consumer type. The underlying mechanism in

that paper is consumer self-selection, whereas our mechanism relies on consumers’ forward-

looking behavior.

On the other hand, our non-stationary framework and solution method contribute theo-

retically to optimal control. The vast majority of papers in marketing and economics restrict

attention to Markov strategies. The most common reason is tractability rather than manage-

rial justifications. Therefore, this restriction may not be without loss of generality and may

cost firms “free dollars” as shown in this paper. Marinovic et al. (2018) contrasts Markov

1 Source: https://www.businessinsider.com/apple-iphone-privacy-facebook-youtube-twitter-snap-lose-10-
billion-2021-11.
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equilibria and non-Markov equilibria in a reputation model. The comparison emphasizes

that restricting attention to Markov equilibria may lead to qualitatively different and unre-

alistic predictions, which highlights the importance of considering non-Markov strategies. To

the best of our knowledge, no paper has studied the non-stationary pricing problem under

consumer gradual learning. We view this paper as an important first step in understanding

firms’ non-Markov interventions in the presence of consumer search.

2 The Model

Our model builds on the seminal paper on consumer search, Branco et al. (2012). A firm

offers a product with a marginal cost of g and chooses the price. A consumer decides whether

to purchase it or not. The consumer’s initial valuation is v0, which is common knowledge.

Before making a decision, she can gradually learn about various product attributes to update

her belief about the product’s value.

The total utility the consumer gets from consuming the product is the sum of the value

of M attributes the product has. Before searching, the consumer’s initial valuation for the

product, v0, is her expected utility. The initial valuation represents the consumer’s knowledge

about the product based on past experiences, word of mouth, or advertising. The consumer

can incur a search cost c to learn more about one of the product attributes. After learning

about each attribute, the consumer updates the valuation of the product by incorporating

the difference between the realized utility of the searched attribute and the expected utility.

Denote this difference for attribute i by xi. Then, the consumer’s valuation after searching

for t attributes is vt := v0 +
∑t

i=1 xi. Suppose that the value of the difference is binary,

xi = ±z with equal probability. When there are infinitely many attributes, each with a very

small weight in value, vt becomes a Brownian motion.

dvt = σdWt,
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where σ = z/
√
dt, the flow search cost is cdt per dt time, and {Wt}t∈R≥0

is the standard

Brownian motion adapted to some filtered probability space (Ω,F , {Ft}t∈R≥0
,P). Figure 1

illustrates the evolution of the consumer’s valuation as the consumer checks more and more

attributes.

Figure 1: A sample path of the consumer’s valuation evolving processes during search

Previous works that study the firm/seller’s marketing strategy in the presence of con-

sumer gradual learning either assume that the firm perfectly observes the consumer’s valua-

tion evolution processes (vt is common knowledge between the consumer and the firm) and

can condition the price on the consumer’s current valuation (Ning, 2021), or that the firm

charges a constant price over time (Branco et al., 2012). Suppose we view the consumer’s

valuation as the state variable, as is the standard and natural way of defining the state

variable in the literature. The firm’s strategy in the first scenario is allowed to be a function

of the state variable vt. In this case, the firm’s problem is to choose the optimal Markov

strategy. This setup does not fit all real-world examples. Due to the increasingly common

privacy regulations such as GDPR and CCPA, it is harder for firms to track consumers’

search behavior online. Even if some firms can track consumer’s search path, it is hard to

know whether or not consumers like the information they find. Moreover, in many offline
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settings, individual-level tracking is not feasible.

When the firm cannot observe the consumer’s valuation evolution and therefore cannot

choose the price based on vt, is offering a constant price the best it can do? The major

innovation of this paper is to allow the price to be a function of time t rather than the

state variable vt. In other words, the firm can strategically explore non-stationary pricing

strategies. Formally, the firm can commit to a pricing scheme p := {pt}t≥0 ∈ P , where P

is a subset of continuously differentiable functions on [0,∞), P ⊂ C1[0,∞). This pricing

strategy is a non-Markov strategy because pt depends on history (time t) other than the

current state vt. It is widely known in optimal control that it is much harder to characterize

non-Markov strategies than Markov strategies.

The consumer search strategy consists of choosing an appropriate stopping time and we

denote by T the set of all stopping times adapted to {Ft}t∈R≥0
. We formalize the setup as

a game with two players, a consumer (“Buyer” B) and a firm (“Seller” S), playing in the

following sequence:

1. At t = 0, the firm commits to a pricing strategy p ∈ P ⊂ C1[0,∞).

2. At any t > 0, the consumer decides whether to purchase the product, exit, or search

for more information.

3. The game ends when the consumer makes a purchase or exits.

The only knowledge the seller has about the consumer is their initial valuation, v0, which

may be derived from a survey conducted over a large population. Importantly, when the

consumer decides whether to purchase the product, exit, or keep searching at any given time,

she takes into account both the current price and the future price trajectory. For any p ∈ P

and τ ∈ T , we define 2

VB(t, x; τ, p) := E
[
e−r(τ−t) max{vτ − pτ , 0} −

∫ τ

t

ce−r(s−t)ds | vt = x

]
(1)

2 For simplicity, we use p to denote {pt}t≥0 whenever this does not cause confusion.
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and

VS(x; τ, p) := E
[
e−mτ (pτ − g) · 1vτ≥pτ | v0 = x

]
(2)

as the corresponding consumer’s, and the firm’s expected payoffs, respectively.

Commitment Assumption

We assume that the firm has dynamic commitment power. It would be a relatively strong

assumption if the firm could track consumer valuation processes due to the hold-up problem.

When new information (consumer’s current valuation) arrives, the firm has an incentive to

deviate from the pricing scheme announced at the beginning to extract more surplus from the

consumer. Anticipating the firm’s incentive to deviate, the consumer will not start searching

without a commitment device. Ning (2021) shows that a firm without commitment power

can address the hold-up problem by offering a “list price.” In contrast, the firm does not

need to offer a list price if it has dynamic commitment power. In such cases, whether the

firm has commitment power will lead to qualitatively different results.

In our setting, the firm does not receive new information over time (no updates on

consumer valuation vt). Therefore, there is no hold-up problem and the firm does not

have an incentive to deviate from the announced pricing strategy. Thus, the commitment

assumption is not a strong assumption in this case. We make the assumption mainly for a

cleaner analysis and presentation.

Solution Concept

We are interested in the following equilibrium concept.

Definition 1. An ε–Subgame perfect Nash’s equilibrium (ε–SPNE) consists of:

({τ ∗[p] ∈ T }p∈P , p∗ ∈ P)
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such that: for all p ∈ P,

VB(t, x; τ ∗[p], p) ≥ VB(t, x; τ, p)− ε, ∀τ ∈ T ,

and VS(x; τ ∗[p∗], p∗) ≥ VS(x; τ ∗[p], p)− ε, ∀p ∈ P .

The consumer’s value function given the seller’s pricing strategy p is:

V B(t, x; p) := sup
τ∈T

VB(t, x; τ, p). (3)

When there is no ambiguity, we will compactly write V B(t, x) = V B(t, x; p). Analogously,

we define the seller’s value function:

V S(x) := sup
p∈P

VS(x; τ ∗[p], p) (4)

Our choice of the equilibrium concept is motivated by the greater analytical traceability

of the problem via perturbation theory to the order of ε. For instance, we later solve for an

analytical closed form of a myopic consumer’s strategy to a slow moving pricing using linear

approximation to the order of ε. For further discussion we refer to Assumption 1. There is

also a technical reason for such an equilibrium concept as we do not need to be concerned

about the existence of τ ∗[p] ∈ T or p∗ ∈ P that achieve the supremum. In a certain case, it

is possible to show that the firm’s profit supremum can only be approached via a limit of an

admissible pricing strategy (we did not require P to be closed in general).

3 Consumer’s Strategy

The consumer faces an optimal stopping problem. She needs to determine the purchasing

and quitting boundaries at any time. When the price is non-stationary, the consumer’s pur-

chasing and quitting boundaries are also time-contingent. This time-varying property makes
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her optimal stopping problem challenging even if we fix a pricing scheme. To illustrate the

impact of non-stationary pricing on the consumer’s problem, we first review the benchmark

with constant price, which has been characterized in Branco et al. (2012).

3.1 A Constant Price Benchmark

If the price is constant, pt = p0 ∈ R, then intuitively, the consumer’s strategy and value

function do not depend on time, V B(t, x; p0) = V B
0 (x; p0), V̄t = V̄ , and V t = V . The value

function of the consumer satisfies:

σ2

2
∂2
xV

B
0 − rV B

0 − c = 0

Instead of having a value matching and a smooth pasting condition at any time t, we now

only have a value matching condition and a smooth pasting condition for the entire problem:

V B
0 (V̄ ; p0) = V̄ − p0, ∂xV

B
0 (V̄ ; p0) = 1,

V B
0 (V ; p0) = 0, ∂xV

B
0 (V ; p0) = 0.

The stationary structure leads to closed-form solutions.

V B
0 (x; p0) =

c

r

[
cosh

√
2r

σ
(x− V − p0)− 1

]
,

V̄ = p0 +

√
c2

r2
+

σ2

2r
− c

r
,

V = p0 +

(√
c2

r2
+

σ2

2r
− c

r

)
− σ√

2r
log

(√
rσ2

2c2
+

√
1 +

rσ2

2c2

)
.

Comparing this benchmark and our problem, we can see that stationarity simplifies the

problem significantly. In the benchmark model, the consumer’s entire optimal stopping strat-

egy can be summarized by two unknowns: the purchasing threshold V̄ and the quitting
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threshold V , which does not depend on time t. The consumer will purchase the product

at any time during the search if her valuation reaches the purchasing threshold and will

quit searching at any time if her valuation reaches the quitting threshold. In contrast, the

consumer’s entire optimal stopping strategy consists of an infinite number of unknowns.

Knowing that the price changes over time, the consumer’s purchasing and quitting thresh-

olds also evolve. She has different purchasing and quitting thresholds at different times. So,

instead of pinning down a one-dimensional purchasing/quitting threshold, we need to de-

termine a two-dimensional purchasing/quitting boundary. These time-dependent thresholds

significantly complicate our problem.

3.2 Consumer’s Strategy under Non–Stationary Pricing

Let’s consider the case where the set of admissible pricing strategies P is given by the set

of continuously differentiable functions that are constant after some amount of time T > 0:

PT :=
{
p ∈ C1[0,∞) | pt = pT ,∀t ≥ T

}
.

We consider when T > 0 is large but finite to provide the boundary condition at t = T

needed for the existence and uniqueness result, but in many cases, there will be no problem

taking the limit T → ∞. Based on the constant price result in the previous section, and by

deriving the Hamilton–Jacobi–Bellman (HJB) equation corresponding to the optimization

problem (3), we propose to consider the following free–boundary problem given p ∈ PT :

Find V : [0, T ] × R → R, with V (t, .) convex, and continuous functions V̄ [p], V [p] :

[0, T ] → R, with V̄t[p] ≥ V t[p], such that
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σ2

2
∂2
xV + ∂tV − rV − c = 0, (t, x) ∈ Ω

V (t, V̄t[p]) = V̄t[p]− pt, ∂xV (t, V̄t[p]) = 1,

V (t, V t[p]) = 0, ∂xV (t, V t[p]) = 0,

V (T, x) = V B
0 (x; pT ),

(5)

where

Ω := {(t, x) ∈ [0, T ]× R | V t[p] < x < V̄t[p]}.

By restricting p to be constant pT for all t ≥ T , we automatically have that V B(T, x; p) must

be given by the constant price value function V B
0 (x; pT ), which makes sense of the ‘initial’

condition. The non–stationary analog of the usual value–matching and smooth–pasting

conditions are also intuitive. The decision boundaries are the constant price pT boundaries

for t ≥ T so we may view V̄ [p], V [p] as functions [0,∞) → R by extending their definition by

this constant. When it is clear from the context, we will write V̄t[p], V t[p] simply as V̄t, V t.

To solve the consumer’s problem, we first need to establish a result for the existence

and uniqueness of the solution to (5). In stochastic control problems, the strong solution

(solution in the usual sense) to the PDE does not always exist. The standard approach is to

work with a relaxed notion, the weak solution (Bressan, 2012; Evans, 2022). Readers who

are not concerned with such technical detail can skip to the end of Remark 1.

Given any open G ⊂ Rn and 1 ≤ p ≤ ∞, we recall the standard notations in functional

analysis Lp(G) and Lp
loc(G) are standard in functional analysis and we refer to Bressan

(2012); Evans (2022) for more detail. Given a Banach space X, we also borrow the notation

Lp(0, T ;X) from §5.9.2 Evans (2022) to denote the space of all u : [0, T ] → X such that(∫ T

0
∥u(t)∥pXdt

)1/p
< ∞ if 1 ≤ p < ∞, or ess supt∈[0,T ] ∥u(t)∥X < ∞ if p = ∞. Similarly, the

notation C(0, T ;X) denotes the space of continuous functions u : [0, T ] → X.

Definition 2. (Weak derivative) Let G ⊂ Rn be open. For any f ∈ Lp(G) and α ∈ Zn
≥0

the α-weak derivative of f (if exists) is the function v ∈ Lp(G) such that for all compactly
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supported smooth functions ϕ ∈ C∞
c (G) we have

∫
G

f(x)∂αϕ(x)dx = (−1)|α|
∫
G

g(x)ϕ(x)dx,

where ∂α := ∂α1
1 · · · ∂αn

n . If such v exists, it is a.e. unique, and we write ∂αf := v. We

denote by W q,p(G) ⊂ Lp(G) the set of all f such that all α-weak derivatives with |α| ≤ q

exists, and by W q,p
loc (G) ⊂ Lp

loc(G) the set of all f such that f |G′ ∈ W q,p(G′) for any open G′

compactly contained in G.

(Weak solution) A weak solution to the free–boundary problem (5) on Ω is any V ∈

L2(0, T ;W 2,2
loc (R)) with a weak derivative ∂tV ∈ L2(0, T ;W 1,2

loc (R)∗) such that

∫
Ω

(
σ2

2
∂2
xV (t, x) + ∂tV (t, x)− rV (t, x)− c

)
ϕ(t, x)dx = 0

for all ϕ ∈ C∞
c (Ω).

Now, we can state the existence and uniqueness result.

Lemma 1. Given a pricing strategy p ∈ PT , we have the following.

1. (Existence) The value function V B(., .; p) is monotonically increasing, convex in

x, and gives a weak solution to the free boundary problem (5) with V B(., .; p) ∈

L∞(0, T ;W 2,∞
loc (R)), and weak derivative ∂tV

B(., .; p) ∈ L∞(0, T ;L∞
loc(R)).

2. (Uniqueness) If V is a weak solution to the free boundary problem (5) with V ∈

L∞(0, T ;W 2,∞
loc (R)) and weak derivative ∂tV ∈ L∞(0, T ;L∞

loc(R)) then V = V B(., .; p)|Ω.

Remark 1. By asking for a weak solution V (t, .) ∈ L2(0, T ;W 2,2
loc (R)) we guarantee that

∂xV (t, .) exists in the classical sense, hence the boundary conditions for ∂xV (t, .) make sense.

In fact, the solution discussed in Lemma 1 is reasonably nice. According to §5.9.2. Evans

(2022), the solution can be represented by V ∈ C(0, T ;W 2,∞
loc (R)), and since V (t, .) is convex

in x it follows that V is continuous, and it is then automatic that V̄ [p], V [p] are continuous.
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Further, ∂tV (., x) and ∂2
xV (t, .) coincide a.e. with some bounded functions (not necessarily

continuous), and the PDE in (5) is satisfied on Ω. Therefore, in our context, nothing much

is lost in imagining ∂tV and ∂2
xV as classical derivatives, which is also why we are using

the symbol ∂α for both weak and classical derivatives as opposed to Dα in most functional

analysis literature.

The lemma above implies that we can work with (5) to solve for the consumer’s value

function instead of directly finding the optimal τ ∗[p] ∈ T . A weak solution is a sufficiently

well–behaved concept for our work as we will mostly be interested in the consumer’s deci-

sion boundaries rather than the smoothness properties of the value function itself. More

importantly, the value function (hence the decision boundaries) does not change by much

corresponding to any small changes in the given pricing strategy.

Lemma 2. Let p, q ∈ PT and let V (., .; p) and V (., .; q) be the corresponding solution to the

free–boundary problem (5), then |V (t, x; p) − V (t, x; q)| ≤ maxs∈[t,T ] e
−r(s−t)|ps − qs| for all

(t, x) ∈ [0, T ]× R.

Remark 2. Lemma 2 shows that for discounting consumers r > 0, any changes in price far

in the future do not have much effect in the present. We can make sense of the consumer

response to an arbitrary p ∈ C1[0,∞) such that limt→∞ e−rtpt = 0. We find the solution

V (., .; pT ) to pT ∈ PT according to Lemma 1 where pT is given by p over [0, T−ε] and constant

for all t ≥ T , then for all sufficiently large T we have
∣∣V (t, x; pT ′)− V

(
t, x; pT

′′)∣∣ < ε for

all T ′, T ′′ > T . This is a real–valued Cauchy sequence, so we may define the value function

of an infinite horizon p to be the limit if we wish.

Lemma 2 justifies our perturbative studies of the solution. To be consistent with ε–

equilibrium concept, we consider perturbations of
√
ε-order. In particular, an

√
ε-order

changes in p will results in
√
ε-order changes in the value of V , and the boundaries V̄ [p], V [p].

The following applies this idea to investigate the direction of consumers’ reactions to some

small changes in pricing, giving us a better idea of the structure of the solution.
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Proposition 1. Let p ∈ PT be a pricing strategy, and let V̄ [p], V [p] : [0,∞) → R denotes

the corresponding purchase and exit boundaries. Let h ∈ PT be an arbitrary pricing strategy

monotonically increasing over [0, T ], and K ∈ R be a constant. Then under the pricing

strategy p̃ := p+
√
εKh, the ε–optimal purchase and exit boundaries take the form

V̄ [p̃] = (V̄ [p] +
√
εKh) +

√
εR̄ +O(ε), R̄ = KS̄

V [p̃] = (V [p] +
√
εKh) +

√
εR +O(ε), R = KS (6)

for some continuous functions S̄ : [0,∞) → R≤0, and S : [0,∞) → R≥0.

Proposition 1 states that the exit boundary is higher, and the purchase boundary is

lower when the consumer expects the price to increase faster. The opposite is true when

the consumer expects the price to decrease faster. On the opposite end of the spectrum, it

is also interesting to understand in general how the solution behave asymptotically under a

large variation of pricing strategy.

Proposition 2. Let p ∈ PT be a pricing strategy, and let V̄ [p], V [p] : [0,∞) → R denotes

the corresponding purchase and exit boundaries. Let h ∈ PT be an arbitrary pricing strategy

strictly monotonically increasing over [0, T ], and K ∈ R be a constant. Then the purchase

and exit boundaries under p̃ := p+Kh satisfies:

V̄t[p̃]− V t[p̃] → 0, as K → +∞

V̄t[p̃]− V t[p̃] → +∞, as K → −∞

at any t ∈ [0, T ). In particular, V̄t[p̃] → p̃t+, V t[p̃] → p̃t− as K → +∞, at any t ∈ [0, T ).

Solving (5) in full generality is beyond the scope of this research. For most of the

remainder of this paper, we focus on the setting where analytically tractable solutions can

be obtained, in particular when the pricing is a linear function in time. The fact that

the space of linear pricing is much smaller than the general pricing space also simplifies
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the problem, especially when searching for the firm’s optimal pricing strategy later in §4.

Consideration of linear pricing may seem restrictive, but the following result shows that for

myopic enough ε–optimal consumers, any pricing strategies which is sufficiently slow–moving

can be approximated by linear pricing. Intuitively, unless the price changes very drastically

in the far future such as growing super–exponentially, the myopic consumers do not look too

far into the future, and over any sufficiently short time interval any differentiable functions

look like a linear function.

Lemma 3. (Almost optimality of linear price approximation) Let p ∈ P be a continuously

differentiable pricing policy, with bounded slope: supt∈R≥0
|p′t| ≤ λ1. Let l : t 7→ lt := p0+p′0 ·t

be the linear approximation pricing policy. By assumption, for any ε > 0, there exists δ > 0

such that

|pt − lt| < δε/2, ∀t ∈ [0, δ).

If r is sufficiently large, for instance, such that:

e−rδ
(
2λ1T + ¯̄V +

c

r

)
+

λ1e
−1

r
<

(1− δ)ε

4

where

T :=
2

r
log

4λ1

ε
, ¯̄V :=

λ1 +
√

λ2
1 + 2rσ2

2r
log

(
1 +

√
λ2
1 + 2rσ2

c

)
.

Let τ ∗[l] ∈ T be the consumer’s optimal learning strategy given the linear pricing l, then τ ∗[l]

is also a consumer’s ε–optimal stopping time under the p pricing strategy:

VB(t, x; τ ∗[l]; p) ≥ V B(t, x)− ε.

We summarize the two simplifying assumptions to obtain analytic results and provide

several justifications in the following. They are by no means minimal. However, they do not

substantially limit our contribution.
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Simplifying Assumptions and Discussion

Assumption 1. For a given ε > 0, we assume that

• consumers are ε–optimal, and is sufficiently myopic

• the firm adjusts the price slowly over time: |p′t| ∈ O(
√
ε)

such that the conditions for Lemma 3 are satisfied.

The assumption ensures that the given price function can be approximated by a linear

function based on Lemma 3 (i.e. r >> 0 is large, and |p′t| ≤ λ1 is small). Given any pricing

p ∈ P the consumer will derive the learning strategy based on

t 7→ p0 +
√
εKt,

√
εK := p′0 ∈ O(

√
ε). (7)

Of course, such linear pricing does not belong to PT for any T > 0, however, this is not

a problem according to Remark 2 which perfectly applies under Assumption 1. We do not

need the consumer to be completely myopic (r = ∞). The consumer is still forward-looking

and rationally anticipates the price evolution in the future. So, the consumer still has time-

varying purchasing and quitting boundaries, and we still capture the consumer’s equilibrium

response to the firm’s non-stationary pricing. This assumption means that the consumer

cares about the near future more than the far future and simplifies the determination of

the optimal stopping time. Since ε can be arbitrarily small, focusing on the consumer’s

ε–optimal strategy rather than the optimal strategy also does not lose much. To summa-

rize, our assumption still captures the main driving force of non-stationary pricing and the

consumer’s rational response. In addition, the consumer has time-varying purchasing and

quitting boundaries under linear pricing. So, we still capture the consumer’s equilibrium

response to the firm’s non-stationary pricing.

16



Solution

Given that the consumer will derive the learning strategy based on linear pricing (7) we

can transform to a simpler frame of reference where the consumer valuation process is a

drifted Brownian motion vt = −
√
εKt + σWt with the price fixed at p0. The transformed

problem is stationary in time, with the corresponding HJB

σ2

2
∂2
xV (x)−

√
εK∂xV (x)− rV (x)− c = 0.

Therefore, the free–boundary problem (5) can be solved in this case by first solving the HJB

above, before making an inverse transformation back to the original frame of reference.

Proposition 3. Under a pricing strategy p ∈ P with
√
εK := p′0, and such that Assumption

1 is satisfied, there is an ε-optimal consumer learning strategy with the value function taking

the form

V B(t, x) = A1e
√
εK−

√
εK2+2rσ2

σ2 (x−p0−
√
εKt) + A2e

√
εK+

√
εK2+2rσ2

σ2 (x−p0−
√
εKt) − c

r
(8)

with purchase and exit boundaries given by

V̄t = p0 + V̄ [
√
εK] +

√
εKt, V t = p0 + V [

√
εK] +

√
εKt (9)

where the constants V̄ [
√
εK], V [

√
εK], A1, and A2 are determined by boundary conditions

in the appendix. To the ε–order, V̄ [
√
εK] and V [

√
εK] take the following analytical form,

V̄ [
√
εK] = V̄ +

√
εR̄ +O(ε), V [

√
εK] = V +

√
εR +O(ε), (10)
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where

S :=
R

K
=

(
V̄ − V

σ2

)(
V̄ +

c

r

)
− 1

2r
=

√
c2

r2
+ σ2

2r

σ
√
2r

log

(√
rσ2

2c2
+

√
1 +

rσ2

2c2

)
− 1

2r
> 0

S̄ :=
R̄

K
= S − 1

2r
· V̄ − V

V̄ + c/r
=

1/(σ
√
2r)√

c2

r2
+ σ2

2r

· c
2

r2
log

(√
rσ2

2c2
+

√
1 +

rσ2

2c2

)
− 1

2r
< 0.

Compared to the result of Proposition 1, we have that R̄, R are constant in this case.

Compared to the constant price benchmark, an increasing pricing scheme (K > 0) with

the same initial price has two impacts on the purchasing threshold. On the one hand, the

benefit of learning becomes lower because the consumer needs to pay more in the future if

she receives positive information and likes the product more. Rationally anticipating this,

the consumer has a lower incentive to search and is more inclined to purchase now, reducing

the purchasing threshold (captured by the negative
√
εKS̄ term). On the other hand, a

higher price makes the consumer less willing to purchase, raising the purchasing threshold

(captured by the positive
√
εKt term). Since the first effect remains stable while the second

effect increases over time, the purchasing threshold is lower than the benchmark threshold at

the beginning but eventually exceeds the benchmark threshold as the price keeps increasing.

An increasing pricing scheme also has two impacts on the quitting threshold. Both a

lower benefit of searching and a higher price make it more likely for the consumer to quit.

So, the quitting threshold is always higher than the benchmark threshold. We also find that

the consumer searches in a narrower region (smaller V̄t − V t) if the price increases rather

than staying constant because of the lower benefit of searching.

A decreasing pricing scheme (K < 0) has the opposite impact on the purchasing and

quitting thresholds. The purchasing threshold is higher than the benchmark threshold at

the beginning because the consumer has a stronger incentive to search and is less inclined to

purchase immediately. It eventually falls below the benchmark threshold as the price keeps

decreasing. The quitting threshold is always lower than the benchmark threshold because
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the benefit of both searching and purchasing is higher. Also, the consumer searches in a

broader region.

4 Firm’s Strategy

4.1 Firm’s Expected Payoff

The expected payoff for the firm implementing the pricing strategy p ∈ P with marginal

cost g is given by VS(x; τ ∗[p], p) as given by (2) where τ ∗[p] ∈ T denotes the consumer’s

ε–optimal response to p. The formula (2) is rather abstract, in this section we show how

to compute VS(x; τ ∗[p], p) which we shall denote by VS(x; p) hereafter for simplicity. For

the consumer with initial valuation x, let V̄ [p], V [p] : [0,∞) → R denotes the consumer’s

decision boundaries corresponding to the τ ∗[p] learning strategy, we solve the heat equation

with absorbing boundary condition:



σ2

2
∂2
vU(t, v;x)− ∂tU(t, v;x) = 0, (t, v) ∈ Ω

U(t, V̄t[p];x) = 0, U(t, V t[p];x) = 0

U(t = 0, v;x) = δ(v − x)

. (11)

Where Ω := {(t, v) ∈ [0,∞)× R | V t[p] < v < V̄t[p]}, and δ(v − x) denotes the Dirac–Delta

distribution concentrated at x. When it is clear from the context, we may denote U(t, v;x)

simply as U(t, v). The solution U(t, v;x) exists (see Rodrigo and Thamwattana (2021) for

an explicit construction of the heat equation solution with moving absorbing boundaries)

and we shall assume that it is the probability density at time t of the consumer valuation

being at vt = v. The probability flux of consumer hitting the moving purchase boundary,

thus getting absorbed, at time s is given by

−σ2

2
∂vU(t, V̄t)− V̄ ′

t · U(t, V̄t) = −σ2

2
∂vU(t, V̄t)
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where V̄ ′
t is the time weak derivative of the purchase boundary, but the term nevertheless

vanishes by construction since U(t, V̄t) = 0. Hence, if x ∈ [V t, V̄t] then we have that

VS(x; p) = −σ2

2

∫ ∞

0

e−mt(pt − g)∂vU(t, V̄t)dt, (12)

otherwise, we simply have VS(x; p) = (p0−g)1x≥V̄0
, i.e. the consumer purchases immediately

and the game ends at t = 0.

4.2 Direction of Price Evolution

The most important property of the firm’s optimal pricing strategy is the direction of

price evolution. Whether the price should stay constant, increase, or decrease over time?

In this section, we carry–on the previous Assumption 1. Unless mentioned otherwise, we

will restrict the firm to implementing only linear pricing, that is we let the set of admissible

pricing to be:

Plin :=
{
t 7→ p0 +

√
εKt | p0 ∈ R, K ∈ [−1,+1]

}
⊂ C1[0,∞).

Given the assumptions, the consumer will respond to p ∈ Plin with learning strategy as

given in Proposition 3 (and Remark 2 taking care of the boundary issues). Therefore, the

firm only needs to determine the optimal (p0, K), and we denote the expected payoff by

VS(x; p0, K). Considering linear pricing from the firm’s perspective is not without loss of

generality. Nevertheless, linear pricing suffices to answer our first main question fully. By

showing that the firm can improve its expected profit by increasing or decreasing the price

linearly, we know that constant price is not generally optimal for the firm when it cannot

track the consumer’s belief evolution process. The most important qualitative property of

the firm’s optimal pricing strategy is the direction of price evolution. Linear pricing is general

enough for us to see whether the price should stay constant, increase, or decrease over time,
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which is managerially relevant to firms in their pricing decision.

The discussion of linear pricing also serves as a template for understanding pricing strate-

gies in more general settings where P could include non–linear pricing strategies as long as

Assumption 1 holds. With these assumptions, the consumer ε–optimal learning decision to

any p ∈ P is entirely determined by the value of pt and its slope p′t at any given time t

according to Proposition 3 which falls under our linear pricing framework. In practice, due

to some regulations P could involve a restriction on how fast the firm can adjust the price

over time. Moreover, suppose that the firm is sufficiently myopic (m >> 0), or if the product

search is very informative (σ2 >> 0) so that the consumer’s valuation diffuses and absorbed

rapidly, or P involves a restriction on the pricing function’s second derivative. Then we can

argue that any p ∈ P is approximately linear in the foreseeable future concerning the firm’s

ε–optimal profit. Therefore, by finding a local maximum (p∗0, K
∗) of VS(x; ., .) with K ∼ 0,

given a sufficiently restrictive non–linear P and certain parameters settings, (p∗0, K
∗) gives

an initial price and slope of the ε–optimal pricing over P for the firm to implement at t = 0.

We shall return to elaborate further on this toward the end of this section. For t > 0 under

such settings, the linear pricing payoff VS(v; ., .) can be integrated over v ∼ distribution of

the diffused valuation vt, then computing the optimal pricing slope to continue evolving the

ε–optimal strategy. Although a further analysis of the pricing dynamic based on this outline

should be possible we shall leave such a challenging topic for future research.

We discuss two linear pricing cases. In the first case, the consumer has zero search costs

(but still discounts the future). In the second case, the consumer has a positive search cost.

Zero Search Costs

When the consumer has zero search costs, the continuation value of searching is positive,

whereas the payoff from quitting is zero. Therefore, she would never quit searching with-

out purchasing the product. Equivalently, the consumer’s quitting boundary is −∞. The

consumer’s optimal search strategy only has a single boundary V̄t.
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If the firm is perfectly patient, it will not have a direct incentive to speed up the con-

sumer’s decision-making process. A purchase at any time gives the firm the same payoff.

Hence, it does not have a strong incentive to increase the price over time to push the con-

sumer to make an early decision. In addition, the firm will charge a sufficiently high price

such that the consumer’s payoff from purchasing the product is negative initially. Therefore,

discounting does not reduce the consumer surplus if she delays the decision by searching for

more information. Even if the price does not decrease over time, the consumer will keep

searching for information because she has nothing to lose. So, the firm has no incentive to

reduce the price over time to prevent the consumer from quitting. In sum, in this case, the

firm has little incentive to charge non-stationary prices. The following proposition shows that

the optimal price is arbitrarily close to a constant price when the firm is perfectly patient.

On the contrary, the firm charges non-stationary prices if it discounts the future.

Proposition 4. Suppose the search cost is zero c = 0.

When the firm is perfectly patient, m = 0, for any fixed initial price p0 the firm can

approach the profit supremum

V S(x) = sup
(p0,K)

VS(x; p0, K) = 2p0 +
σ√
2r

− g − x,

and, if p0 is not fixed, then it is optimal for the firm to set p0 as large as possible.

When the firm’s discount factor is sufficiently small or sufficiently large, the slope K of

the optimal linear pricing is bounded from zero.

Intuitively, since there’s no exit boundary, a consumer started at any x will eventually

purchase, and m = 0 means the seller can wait indefinitely, therefore the seller can charge

an arbitrarily high price p0. The fact that the optimal p0 is unbounded is also mentioned in

Branco et al. (2012).
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Positive Search Costs

The previous section shows K → 0 if the search cost and the firm’s discount factor are

0. For the slope of the optimal price to be bounded from zero, the firm must discount the

future if there is no search cost. In this section, we consider the case with a positive search

cost. In the presence of a positive search cost, the continuation value of searching may be

negative, hence both the purchase and exit boundaries are finite, giving two unknowns to be

determined at any given time in the optimal search problem.

Since the optimal price is non-stationary with K bounded from zero in the presence of

search friction, even if the firm is perfectly patient, we will focus on the no-discounting case

in this section.3 We consider K in the vicinity of 0, and examine whether the firm would

benefit from slightly increasing (K ≳ 0) or decreasing (K ≲ 0) the price over time. The

consumer optimal response to the linear pricing t 7→ p0 +
√
εKt is characterized by the

moving purchase and exit boundaries V̄t, and V t as in Proposition 3, in particular we have

V̄0 = p0 + V̄ [
√
εK], V 0 = p0 + V [

√
εK],

where V̄ [
√
εK], V [

√
εK] depends on

√
εK and are determined in Proposition 3.

Proposition 5. Suppose the search cost is positive c > 0, and the firm is perfectly patient

m = 0. The firm’s expected profit from a consumer whose initial valuation is x is the

following.

VS(x; p0, K) =
p0 − g + (V̄0 + x− 2V 0)

1− exp
(
+2

√
εK

σ2 (V̄0 − V 0)
) − 2(V̄0 − V 0)(

1− exp
(
+2

√
εK

σ2 (V̄0 − V 0)
))2

−
(p0 − g + (V̄0 − x)) exp

(
+2

√
εK

σ2 (x− V 0)
)

1− exp
(
+2

√
εK

σ2 (V̄0 − V 0)
) +

2(V̄0 − V 0) exp
(
+2

√
εK

σ2 (x− V 0)
)

(
1− exp

(
+2

√
εK

σ2 (V̄0 − V 0)
))2 (13)

3 As we can see from the zero search cost case, the firm is more inclined to charge non-stationary prices
if it discounts the future.
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if x ∈ (V̄0, V 0) and K ̸= 0, and VS(x; p0, K) = (p0 − g)
(

x−V 0

V̄0−V 0

)
if x ∈ (V̄0, V 0) and K = 0.

VS(x; p0, K) = 0 if x ≤ V 0. VS(x; p0, K) = p0 − g if x ≥ V̄0.

The firm’s value function in the above proposition allows us to characterize under what

conditions the firm intends to increase the price over time and under what conditions the

firm seeks to decrease the price over time. By keeping K ∼ 0 it is also automatically optimal

to set p0 to be the optimal static price according to Branco et al. (2012):

p̂ = p̂(x) =


x+g−V

2
, V + g < x < 2V̄ − V + g

x− V̄ , x ≥ 2V̄ − V + g

.

Define q = x−V−g
2(V̄−V )

as the initial relative position of the consumer between the purchasing

and quitting boundaries under p̂. It turns out that

∂VS

∂K
(x; p0 = p̂, K = 0) =

(V̄ − V )2

3σ2
(1− 2q)q(1− q)− (S̄q + S(1− q))q

is not identically zero for all q ∈ [0, 1] and its sign depends only on σ2/r, c/r and q. This shows

that for a generic q ∈ [0, 1] the optimal strategy (p∗0, K
∗) is such that K∗ must be bounded

away from 0 even form = 0. The seller can immediately improve its expected profit by setting

K ≳ 0 if ∂VS

∂K
(q; p0 = p̂, K = 0) > 0, and by setting K ≲ 0 if ∂VS

∂K
(q; p0 = p̂, K = 0) < 0. We

summarize the result in Figure 2.

We divide the figure into four regions.

I (Low incentive to search) When the information is too noisy (low σ2), the search cost is

too high (high c), or the consumer values little about the future (high r), the consumer

has a low incentive to search for information. In such cases, the firm needs to give the

consumer a high surplus to encourage her to search, which hurts its profit. So, it becomes

more attractive for the firm to convince the consumer to purchase the product at the

beginning, based on the initial valuation and the expected price trajectory. For any given
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Figure 2: Region plots of seller’s expected profit improvement direction of K in the vicinity
of K ∼ 0, using m = 0, with c/r = 1 for the left plot, and σ2/r = 1 for the right plot.

initial price, by charging an increasing price over time, the firm lowers the purchasing

threshold at the beginning by making it more desirable for the consumer to make an

immediate decision. Compared with the stationary pricing strategy of charging a lower

constant price, this non-stationary pricing strategy moves the purchasing threshold in

the same direction (downwards) without sacrificing the profit conditional on purchase.

II (High–value consumer) When the consumer has a high initial valuation, she is too

valuable to lose from the firm’s perspective. Therefore, the firm wants to increase the

purchasing probability in this case. Moreover, a high–value consumer can earn a positive

payoff from purchasing immediately, which decreases over time because of discounting.

Thus, the firm also wants the consumer to buy quickly. An increasing pricing strategy

reduces the benefits of searching and encourages the consumer to purchase quickly and

with a higher likelihood.

III (Medium–value consumer) When the consumer has a moderate interest in the product,

an increase in price does not suffice to convince the consumer to purchase quickly with-
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out learning much additional information. Instead, it reduces the benefit of searching

because the consumer knows she has to pay a higher price if she learns positive things.

Therefore, an increasing price will lead to a quick exit rather than a quick purchase.

The firm can benefit from reducing the price gradually in this case. A decreasing price

helps the firm keep the consumer engaged in the search process even if she receives some

negative information early on. It increases the purchasing likelihood. Because of the

moderate initial valuation, the firm can still obtain a decent profit at a lower price. This

pricing strategy protects the firm from missing potentially valuable consumers.

IV (Low–value consumer) By charging a decreasing price over time, the firm can keep the

consumer engaged in the search process even if she receives some negative information

early on. However, it is not worth it for the firm to reduce the price over time for two

reasons. First, the profit from an immediate purchase is already low when the consumer

has a low initial valuation. The firm will obtain an even lower profit from purchasing

if the consumer searches for a while and eventually buys at a lower price. Second, the

consumer must accumulate a lot of positive information before purchasing due to the low

initial valuation. The purchasing probability will still be low even if the price slightly

reduces over time, and cannot offset the cost of a lower profit per purchase.

The firm quickly filters out many consumers by implementing an increasing pricing

strategy instead. On the one hand, the loss from not converting these people is limited

due to the low profit per purchase and the low purchasing probability. On the other

hand, the benefits of charging a higher price to the remaining consumers are high.

Any consumers not quitting despite the increasing price must have learned positive

information and are more valuable to the firm.

So far, we discussed K in the vicinity of 0 by analyzing the derivative of VS(x; p0, K) at

K = 0 with p0 = p̂ = x+g−V
2

. For any K ̸= 0, by solving ∂VS

∂p0
(x; p∗0, K) = 0 we find that the

26



optimal initial price p0 that maximizes VS(x; ., K) is:

p∗0(x,K) :=
x+ g

2
+

σ2

2
√
εK

− V [
√
εK]

2

(
1− coth

√
εK

σ2

(
V̄ [

√
εK]− V [

√
εK]

))
− V̄ [

√
εK]

2
coth

√
εK

σ2

(
V̄ [

√
εK]− V [

√
εK]

)
for x ∈ (V 0, V̄0) and we can check that limK→0 p

∗
0(x,K) = p̂(x).

Lemma 4. Suppose that σ
√
r > 0, then there exists λ1 > 0 sufficiently small such that if

(p∗0, K
∗) ∈ R× [−λ1,+λ1] is any local maximum point of VS(x; ., .), then either p∗0 < p̂,K∗ ≳

0, or p∗0 > p̂,K∗ ≲ 0.

In fact, it is possible to find values of q, r, c, σ2, and λ1 > 0 such that (p∗0, K
∗) is the

unique (hence global) maximum point of VS(x; ., .) over R × [−λ1,+λ1], satisfying either

p∗0 < p̂,K∗ ≳ 0, or p∗0 > p̂,K∗ ≲ 0.

We note some implications of Lemma 4 beyond the linear pricing strategies. Suppose

that we expand the seller’s set of admissible pricing strategies to:

Pλ1,λ2 :=

{
p ∈ W 2,∞(R>0) | sup

t∈R>0

|p′t| ≤ λ1, ess sup
t∈R>0

|p′′t | ≤ λ2

}

for some λ1, λ2 > 0, and by setting p0 := limt→0+ pt we interpret Pλ1,λ2 ⊂ C1[0,∞). If

λ2 = 0. Then Pλ1,λ2 reduces to the set of linear pricing strategies, however, when λ2 > 0

we also allow strategies that are non–linear, but not too non–linear. If λ1 = 0 then Pλ1,λ2

contains only static prices. In practice, sellers may be restricted by some regulations in how

fast they can change the price over time, which means λ1 > 0 cannot be too large. On the

other hand, for any δ > 0 we have:

V S(x) = sup
p∈Pλ1,λ2

[
E
[
e−mτ (pτ − g) · 1vτ≥pτ · 1τ<δ|v0 = x

]
+ e−mδ

∫
R
VS(x; p·+δ)U(δ, x)dx

]
.

(14)

By Assumption 1, we already have that the buyer is myopic and only cares about the pt and
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p′t at any given time t. Given a finite λ2 > 0, we can find δ > 0 such that the first term

of (14) can be approximated with a linear pricing lt := p0 + p′0 · t up to an order of some

ε > 0, i.e. E[e−mτ (pτ − lτ ) · 1vτ≥pτ · 1τ<δ|v0 = x] < ε/2. Since survival probability satisfies

P[τ ∗[l] > δ] = O
(

1
σ
√
δ

)
, we have that the second term of (14) is of

(
1

σ
√
δ

)
–order. Suppose

that σ >> 0, which is relevant in a situation where a large amount of information can be

transferred to the buyer effectively, then we may argue that the second term of (14) is < ε/2.

In conclusion, for some sufficiently small λ1 > 0 and sufficiently large σ2 >> 0, Lemma 4 in

fact classifies the initial value and initial slope of the optimal pricing strategy over Pλ1,λ2 .

4.3 Forced–Purchase Strategy

In the previous sections, we focused on the perturbative regime of pricing strategies:

linear and slow–moving prices. However, we will show that, in a certain case, an alternative

pricing strategy is tractable and leads to interesting results. Namely, when the buyer’s initial

valuation is sufficiently high, it is optimal for the seller to force an immediate purchase by

increasing the price as sharply as possible. This presents another way for the firm to utilize

non–stationary pricing to its advantage. In this section, we impose neither the myopic

assumption nor the slow-varying price assumption from Assumption 1. The main result of

this section is as follows.

Proposition 6. Let h ∈ PT be an arbitrary pricing strategy strictly monotonically increasing

over [0, T ] with h0 = 0 and let p0 ∈ R be a constant. Then

lim
K→∞

VS(x; p0 +Kh) =


p0 − g, if x > p0

0, if x ≤ p0

. (15)

Further, let τ ∗[p] ∈ T be the ε–optimal buyer’s stopping time to the pricing strategy p ∈ PT .

Then for the given parameters m, r, c, σ2 such that V > −∞ (i.e. c > 0), there exists
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x̄ := x̄(m, r, c, σ2) such that if x > g + x̄ then

V S(x) = sup
p∈PT

VS(x; τ ∗[p], p) = x− g

can be approached by the sequence

{pn := p0,n +Knh ∈ PT}n∈Z≥0
(16)

where p0,n → x− and Kn → +∞.

We note that for x > g + x̄(m, r, c, σ2), c > 0, we have V S(x) = x− g regardless of how

large T > 0 is chosen. The condition c > 0 is important as we recall the c = 0,m = 0 case

with T → ∞ from §4.2 that the optimal initial price is unbounded, leading to V S(x) = ∞.

Even if we require p0 = x−, the optimal linear pricing strategy is to set the slope K ≳ 0 as

close to 0 as possible and achieve VS(x; p0 = x−, K) ∼ x − g + σ√
2r

> x − g. Although the

second inequality in (38) continues to hold even if V t[p] = −∞ < g, since the buyer never

exits without the exit boundary, the real reason the seller can achieve an expected payoff

higher than x− g is because Martingale stopping theorem fails as vt∧τ∗[p] is not bounded in

this case.

It’s also interesting to compare this section’s result with the result from the constant

pricing strategy when c > 0. We recall the optimal constant price p̂ is p̂(x) = x− V̄ for all

x ≥ 2V̄ − V + g, giving the seller’s payoff of x − g − V̄ < x − g. Intuitively, to implement

a constant pricing version of forced–purchase strategy, the seller can only set the price as

high as p0 + V̄ is still ≤ x, whereas the purchase boundary itself can be moved with non–

stationary pricing strategy which allows for the seller to set a higher price. Therefore, we

have demonstrated that by allowing for non–stationary pricing, the seller is able to increase

its profit by V̄ . The results for linear pricing in §4.2, in particular Figure 2, also suggests the

seller’s expected profit will increase with increasing price strategy when q is high. Indeed,
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both analytic plots of VS(x; p0, K) and some experimentation with our backward–induction–

based simulations both appeared to agree that K ≳ 0 in region II of Figure 2 suggests the

implementation of the forced–purchase strategy. Although it is tempting to speculate that

the boundary between region II and III in Figure 2 is exactly x̄, we do not believe this is true,

however their relationship certainly posts an interesting direction for future investigation.

5 Conclusion

Consumers gather information gradually to help themselves make the purchasing deci-

sion. The increasingly popular privacy regulations have made it harder for firms to track

individuals in real time. Even if a firm can track consumers’ browsing behavior, it is difficult

for the firm to infer whether consumers like the information they see. Without the ability

to track consumer’s valuation evolution about the product, one may think that firms can

only offer a constant price. The major innovation of our paper is to allow the price to be a

function of time rather than the consumer’s current valuation of the product. We find that

constant price is not always optimal for the firm. It can benefit from using non-stationary

pricing strategies. By assuming that the consumer is sufficiently myopic and uses ε− optimal

strategies, and that the firm uses linear prices that vary slowly, we show that, when the search

cost is zero, the optimal price is arbitrarily close to a constant price if the firm is perfectly

patient. In contrast, the slope of the optimal price is bounded from zero if the firm discounts

the future. When the search cost is positive, the optimal price is non-stationary, even if the

firm is perfectly patient. In particular, the firm always increases the price over time if the

information is too noisy or the search cost is too high. In other cases where consumers have

a stronger incentive to search, the firm charges an increasing price for consumers with high

or low initial valuation, while charging a decreasing price for medium–value consumers.

This paper makes two main contributions. On the one hand, it provides new managerial

insights for the firm by considering non-stationary pricing. The primary goal of marketing
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is to reduce the cost and increase the return. Using time as the information source to guide

pricing decisions is essentially free. Firms do not need to invest heavily in the tracking tech-

nology. Hence, all the increased revenue due to non-stationary pricing becomes profit. It is

also immune to privacy regulations. Regulations can prevent firms from tracking consumers’

demographic information, browsing behavior, and other characteristics, but cannot ban the

time to which everyone has access. Extant research mainly focuses on the economic impact

of privacy regulations. We contribute to this stream of literature by studying what firms can

do to respond to such privacy regulations.

On the other hand, our non-stationary pricing framework and solution method contribute

theoretically to optimal control. The vast majority of papers in marketing and economics

restrict attention to Markov strategies. The most common reason is tractability rather than

managerial justifications. Therefore, this restriction may not be without loss of generality

and may cost firms “free dollars,” as shown in this paper. We view this paper as the first

step in understanding firms’ non-Markov interventions in the presence of consumer search.
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Appendix

Proof of Lemma 1.

Part 1: The fact that V B(T, x) = V B
0 (x; pT ) is clear. For x sufficiently high (e.g. higher

than the purchase boundary of V B
0 (.; maxt∈[0,T ] pt)) we must have that V B(t, x) = x − pt.

Likewise, for x sufficiently low (e.g. lower than the exit boundary of V B
0 (.; mint∈[0,T ] pt)).

In particular, V B(t, .) must also satisfies the value–matching conditions at some boundaries

V̄t, V t : [0, T ] → R, V̄t > V t.

For any fixed t we argue V B(t, .) is monotonically increasing and convex. At x and for

an arbitrary small ε > 0 we can find τt,x,ε ∈ T such that VB(t, x; τt,x,ε, p) ≥ V B(t, x) −

ε. Fixing τt,x,ε, then we note that VB(t, x + ∆; τt,x,ε, p) ≥ V B(t, x) − ε + mt,x,ε∆ where

mt,x,ε := E
[
e−r(τt,x,ε−t)|vt = x

]
≥ 0. By the non–optimality of τt,x,ε at x + ∆ we have that

V B(t, x+∆) ≥ V B(t, x)− ε+mx,ε∆. Since ε is arbitrary small, we conclude that V B(t, x)

is convex in x, and since mt,x,ε ≥ 0 we have that V B(t, x) is monotonically increasing in x.

It then follows that V B(t, .) is continuous and differentiable a.e. with |∂xV B| ≤ 1 (hence

Lipschitz continuous in x) and with weak derivative ∂xV
B(t, .) ∈ L∞

loc(R) (see §5.8.2 of Evans

(2022)).

For any fixed x we show that V B(., x) is differentiable a.e.. Given t, t′ ∈ [0, T ], by

appropriately relabeling t > t′ or t < t′, we can assume that V B(t′, x) ≤ V B(t, x). Let

τt,x,ε ∈ T be defined as above, the expected payoff from keep using τt,x,ε at t′ (which is the

same as shifting p back by ∆ := t′ − t, keeping t and the stopping time fixed):

VB(∆) := VB(t, x; τt,x,ε, p·−∆)

is continuously differentiable in ∆. Clearly, |(VB)′(∆)| ≤ K := maxs∈[0,T ] |p′s| and

so V B(t′, x) ≥ V B(t, x) − ε − K|δt|. Since ε > 0 is arbitrary small, we have that

|V B(t′, x) − V B(t, x)| ≤ K|t′ − t|. This means V B(., x) is Lipschitz continuous and hence

differentiable a.e. with bounded weak derivative ∂tV
B(., .) ∈ L∞([0, T ] × R), |∂tV B| ≤ K
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(see §5.8.2 of Evans (2022)).

It follows from the argument above that for any fixed t, the set Ut := {x ∈ R|V B(t, x) >

max{x − pt, 0}} is an open interval which can be written in the form (V t, V̄t) for some

continuous functions V̄t, V t : [0, T ] → R, V̄t > V t.

We show that ∂xV
B(t, .) is continuous. We already knew that ∂xV

B(t, .) is monotonically

increasing, therefore for any x∗ ∈ R we have

∂xV
B(t, x∗+) := lim

x′→x∗+
∂xV

B(t, x′) ≥ lim
x′→x∗−

∂xV
B(t, x′) =: ∂xV

B(t, x∗−),

and at (t−δt, x∗) the consumer is forced to continues learning for δt, before continue optimally

under τ ∗, then the expected payoff is:

e−rδtE
[
V B(t, vt)|vt ≥ x∗]P [vt ≥ x∗|vt−δt = x∗]

+ e−rδtE
[
V B(t, vt)|vt < x∗]P [vt < x∗|vt−δt = x∗]− c

r

(
1− e−rδt

)
≥ 1

2

[
V B(t− δt, x∗) + ∂xV

B(t, x∗+) · σ
√
2δt√
π

]

+
1

2

[
V B(t− δt, x∗)− ∂xV

B(t, x∗−) · σ
√
2δt√
π

]
+O(δt)

= V B(t− δt, x∗) +
(
∂xV

B(t, x∗+)− ∂xV
B(t, x∗−)

)
· σ

√
δt√
2π

+O(δt).

The inequality followed from the convexity and V B(t − δt, x∗) = V B(t, x∗) + O(δt) by the

continuity in t. We can see that the payoff is > V B(t− δt, x∗) for sufficiently small δt unless

∂xV
B(t, x∗+) = ∂xV

B(t, x∗−). Therefore, V B(t, .) is in fact continuously differentiable for

each fixed t. The smooth–pasting conditions also follow.

Now, consider any (t, x) ∈ Ω. From the principle of optimality, we have for any t′ ≥ t:

V B(t, x) = sup
τ∈T

E

[
e−r(τ∧t′−t)V B(τ ∧ t′, vτ∧t′)−

∫ τ∧t′

t

ce−r(s−t)ds|vt = x

]
.
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For any ε′ > 0 and δt > 0 it is possible to find τt,x,ε′ ∈ T and because V B is Lipschitz

continuous it is also possible to find ε > 0 independent of (t, x) such that

E
[
e−rτt,x,ε′∧δtV B(t′ + τt,x,ε′ ∧ δt, x′ + σWτt,x,ε′∧δt)−

c

r

(
1− e−rτt,x,ε′∧δt

)]
+ ε′δt

≥ V B(t′, x′) ≥ E
[
e−rδtV B(t′ + δt, x′ + σWδt)−

c

r

(
1− e−rδt

)]

for all (t′, x′) ∈ (t, x) + [−ε,+ε]2. The second inequality followed simply from the non–

optimality. The usual way to proceed is by applying Ito’s Lemma. Although V B is not

known to be C1,2(Ω), more general versions of Ito’s Lemma are available such as the one for

convex functions (see §3.6 Karatzas and Shreve (2012)), or the weak derivative version Aebi

(1992). In any case, the standard treatment is by mollifying the problematic function which

we shall provide detail for our simple case for completeness.

For any ε > 0 the mollification of any function f ∈ L1
loc([0, T ]×R) is the smooth function

fε := ηε ∗ f , where ηε(t, x) ∝ e
− 1

1−∥(t,x)∥2/ε2 1(t,x)∈[−ε,+ε]2 is a standard compactly supported

bump–function. Applying the mollification in (t′, x′) centered at (t, x) to the above inequality

before applying Ito’s Lemma we obtain:

E

[∫ t+τt,x,ε′∧δt

t

e−r(s−t)

×
(
σ2

2
∂2
xV

B
ε (s, vs) + ∂tV

B
ε (s, vs)− rV B

ε (s, vs)− c

)
ds|vt = x

]
+ ε′δt

≥ 0 ≥ E
[∫ t+δt

t

e−r(s−t)

(
σ2

2
∂2
xV

B
ε (s, vs) + ∂tV

B
ε (s, vs)− rV B

ε (s, vs)− c

)
ds|vt = x

]
.

Taking the limit δt → 0 we get

∣∣∣∣σ2

2
∂2
xV

B
ε (t, x) + ∂tV

B
ε (t, x)− rV B

ε (t, x)− c

∣∣∣∣ ≤ ε′.

Recall that ε′ > 0 arbitrary and ε > 0 is independent of (t, x), this establishes a uniform
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convergence σ2

2
∂2
xV

B
ε + ∂tV

B
ε − rV B

ε − c → 0 on Ω as ε → 0. Let g := ∂tV
B − rV B −

c. Since |V B| ≤ L := maxs∈[0,T ](V̄s − ps) and |∂tV B| ≤ K := maxs∈[0,T ] |p′s|, therefore g

is bounded: |g(t, x)| ≤ K + rL + c. It follows that g(t, .) ∈ L∞
loc(R) ⊂ L1

loc(R). From

the properties of mollification (see §5.3.1 of Evans (2022)) we already know the L1
loc(R)

convergence ∂tV
B
ε (t, .) − rV B

ε (t, .) − c → g(t, .), it follows from the uniform convergence

above that ∂2
xV

B
ε (t, .) → g(t, .) in L1

loc(R) as ε → 0. Therefore the weak derivative ∂2
xV

B(t, .)

exists, coincides with g(t, .) a.e.,

σ2

2
∂2
xV

B + ∂tV
B − rV B − c = 0 a.e. on Ω

and ∂2
xV

B(t, .) ∈ L∞(R) for each t.

Part 2: Let V be the weak solution as given in Lemma’s statement but for convenience,

let’s also extend the definition by V (t, x) := max{x−pt, 0} for (t, x) /∈ Ω, and V (t ≥ T, x) :=

V B
0 (x; pT ). As before, we consider the mollification Vε := ηε ∗V before proceeding with Ito’s

Lemma. For any given stopping time τ ∈ T we have that

E
[
e−rτVε(τ, vτ )|vt = x

]
− e−rtVε(t, x)

= E
[∫ τ

t

e−rs

(
−rVε(s, vs) + ∂tVε(s, vs) +

σ2

2
∂2
xVε(s, vs)

)
ds|vt = x

]
. (17)

Since we have assumed pt = pT constant for t ≥ T , we may restrict our attention only to

τ ∈ T which coincides with the constant price stopping rule (characterized by the purchase

and exit boundaries pT + V̄ , pT + V ) whenever τ ≥ T . In other words, we only consider any

arbitrarily stopping time τ which is only potentially non–optimal for 0 ≤ τ < T .

We proceed by taking the limit as ε → 0 on both–sides of (17). In the following, let’s

assume that ε < ε̄ for some ε̄ > 0. For the LHS, we have a pointwise convergence: Vε → V

over [0, T ]× R. Let L := maxs∈[0,T ](V̄s − ps) then |Vε(t, x)| ≤ max{x− pt, L}. Further,
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E
[
e−rτ max{vτ − pτ , L}|vt = x

]
≤ V B

0 (x; p = min
t≥0

pt, c = 0) + L

≤ max

{
x−min

t≥0
pt,

σ√
2r

}
+ L < ∞

and so E [e−rτVε(τ, vτ )|vt = x] → E [e−rτV (τ, vτ )|vt = x] by the Dominated Convergence The-

orem. We now turn to the RHS. Since V is a weak solution, we have σ2

2
∂2
xVε+∂tVε−rVε−c = 0

for all (t, x) ∈ {V t+ε < x < V̄t−ε, t ∈ [0, T ]}, so let’s focus on the vicinity of x = V̄t bound-

ary, the x = V t boundary is similar. By the convexity of V (t, .) we have that the weak

derivative ∂2
xV (t, .) coincides a.e. with the classical second derivative, hence ∂2

xV (t, .) ≥ 0

a.e. and so ∂2
xVε(t, x) ≥ 0. Since V ∈ L∞(0, T ;W 2,∞

loc (R)) implies the uniform essential

boundedness of ∂2
xV (t, .) for t ∈ [0, T ], hence for any given δ̄ > 0, let ε̄ > 0 be such that

1 ≥ ∂xVε(t, x) > 1 − δ̄ for all (t, x) ∈ {V̄t − ε̄ < x < V̄t + ε̄, t ∈ [0, T ]} and all ε < ε̄. For

δ > 0 let’s define V̄t,δ,ε := min{x|Vε(t, x) = x − pt + δ} which is differentiable in t. For any

t ∈ [0, T ] and V̄t > x > V̄t − ε̄ we can choose δ > 0 such that V̄t,δ,ε = x and it follows from

differentiating the defining equation Vε(t, V̄t,δ,ε) = V̄t,δ,ε − pt + δ that

∂tVε(t, V̄t,δ,ε) + V̄ ′
t,δ,ε∂xVε(t, V̄t,δ,ε) = V̄ ′

t,δ,ε − p′t

=⇒ |∂tVε(t, x) + p′t| < |V̄ ′
t,δ,ε| · |1− ∂xVε(t, x)| < Mδ̄,

where M := maxs∈[0,T ] |p′s|+ ess sup[0,T ]×R |∂tV |. The argument we have been through above

shows that for (t, x) in the ε̄ vicinity of the boundary ∂Ω̄ we have ∂tVε varies no more than

Mδ̄, whereas ∂2
xVε decreases rapidly to zero away from Ω. Therefore, σ2

2
∂2
xVε + ∂tVε − rVε −

c −Mδ̄ < 0 for (t, x) /∈ {V t + ε < x < V̄t − ε, t ∈ [0, T ]}. It follows that for all ε > 0 with

ε < ε̄ the RHS of (17) is always ≤ E
[∫ τ

t
ce−rsds|vt = x

]
+ Mδ̄. Since δ̄ > 0 is arbitrary

small, under the limit ε → 0 (17) becomes

E
[
e−rτV (τ, vτ )|vt = x

]
− e−rtV (t, x) ≤ E

[∫ τ

t

ce−rsds|vt = x

]
,
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Using V (t, vt) ≥ max{vt − pt, 0} and rearranging the inequality above, we obtain:

V (t, x) ≥ E
[
e−r(τ−t) max{vτ − pτ , 0} −

∫ τ

t

ce−r(s−t)ds|vt = x

]
. (18)

Since τ is arbitrary, we have by the definition of supremum that V (t, x) ≥ V B(t, x).

For any (t, x) ∈ Ω, consider the hitting time τ ∗ ∈ T of the valuation process starting at

x to the boundary ∂Ω̄. Any sample path of vt from x to vτ∗ ∈ ∂Ω̄ is contained entirely inside

Ω where σ2

2
∂2
xV + ∂tV − rV − c = 0 a.e.. Take the ε → 0 limit of (17), use the boundedness

of each term on the RHS’s integrand over Ω̄ to obtain the convergence of RHS’s integral via

Dominated Convergence Theorem, and the fact V (τ ∗, vτ∗) = max{vτ∗ − pτ∗ , 0} to conclude

that we get (18) with equality. Therefore, the supremum can be reached with τ ∗, hence

V (t, x) = V B(t, x).

Proof of Lemma 2. According to Lemma 1, the solution V must coincide with the value

function V B on [0, T ] × R, therefore, we may take V (., .; p) and V (., .; q) to be given by

(3) with p and q, respectively. Let’s consider a fixed (t, x) ∈ [0, T ] × R, and let’s sup-

pose that V (t, x; q) ≤ V (t, x; p). For an arbitrary ε > 0, let τt,x,ε[p] ∈ T be such that

VB(t, x; τt,x,ε[p], p) ≥ V (t, x; p)− ε, then

V (t, x; q) ≥ VB(t, x; τt,x,ε[p], q) > VB(t, x; τt,x,ε[p]; p)− max
s∈[t,T ]

e−r(s−t)|ps − qs|

≥ V (t, x; p)− max
s∈[t,T ]

e−r(s−t)|ps − qs| − ε

Since ε > 0 is arbitrary, it must be the case that:

V (t, x; p) ≥ V (t, x; q) ≥ V (t, x; p)− max
s∈[t,T ]

e−r(s−t)|ps − qs|.

If V (t, x; q) ≥ V (t, x; p), then we simply switch the role of p, q and follow through with the
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above argument, hence we get that

|V (t, x; p)− V (t, x; q)| ≤ max
s∈[t,T ]

e−r(s−t)|ps − qs|,

which proves the result.

Proof of Proposition 1. By Lemma 2 we know that V B(., .; p̃) would agree with V B(., .; p)

up to the
√
ε order, therefore we propose the following ansatz:

V B(t, x; p̃) = V B(t, x−
√
εKht; p) +

√
εV B

1 (t, x) +O(ε).

We note that V B(t, x −
√
εKht; p) is simply the solution V B(t, x; p) shifted according to

√
εKh which satisfies the value–matching and smooth–pasting conditions at V̄ [p] +

√
εKh

and V [p]+
√
εKh, but does not satisfies the PDE, hence the

√
εV B

1 correction is needed. At

t = 0, V B(0, x −
√
εKh0; p) can also be recognized as V B(0, x; p̃0) where p̃0 := p +

√
εKh0

is a pricing strategy shifted from p by a constant
√
εKh0. If K > 0, then p̃ ≥ p̃0 because h

is monotonically increasing, and we have that V B(0, x; p̃) ≤ V B(0, x; p̃0), i.e. V B
1 (0, x) ≤ 0.

Similarly if K < 0, then V B
1 (0, x) ≥ 0. We can repeat the above argument at any given t,

hence for any (t, x) ∈ [0,∞)× R we conclude that:

V B
1 (t, x) ≤ 0 if K > 0, V B

1 (t, x) ≥ 0 if K < 0. (19)

By adding
√
εV B

1 correction, we further need a
√
ε–order correction to the purchase and exit

boundaries V̄ [p] +
√
εKh and V [p] +

√
εKh which take the form (6). The equation for V B

1

can be found by collecting the
√
ε–order terms in the PDE of V B(., .; p̃):

σ2

2
∂2
xV

B
1 (t, x) + ∂tV

B
1 (t, x)− rV B

1 (t, x)−Kh′
t∂xV

B(t, x; p) = 0. (20)

We remark that if h′
t = 0 for all t, i.e. p̃ is simply a shift by a constant from p, then
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V B
1 = 0 is the unique solution given all the boundary conditions. To study R̄ and R we

will now analyze the boundary conditions of V B(., .; p̃) to the first–order in
√
ε. Note that

V B(t, x−
√
εKht; p) automatically satisfies the value–matching conditions at V̄ [p̃] and V [p̃],

as we will confirm below, because ∂xV
B(t, V̄t[p]; p) = 1 and ∂xV

B(t, V t[p]; p) = 0. We have

via Taylor expansion and comparing the
√
ε–order terms:

V B(t, V̄t[p̃]; p̃) = V̄t[p̃]− p̃t

=⇒ V B(t, V̄t[p] +
√
εR̄t; p) +

√
εV B

1 (t, V̄t[p]) = V̄t[p]− pt +
√
εR̄t

V B
1 (t, V̄t[p]) = −R̄t∂xV

B(t, V̄t[p]; p) + R̄t =⇒ V B
1 (t, V̄t[p]) = 0. (21)

∂xV
B(t, V̄t[p̃]; p̃) = 1 =⇒ ∂xV

B(t, V̄t[p] +
√
εR̄t; p) +

√
ε∂xV

B
1 (t, V̄t[p]) = 1

∂xV
B
1 (t, V̄t[p]) = −R̄t∂

2
xV

B(t, V̄t[p]; p) =⇒ R̄t = − ∂xV
B
1 (t, V̄t[p])

∂2
xV

B(t, V̄t[p]; p)
. (22)

V B(t, V t[p̃]; p̃) = 0 =⇒ V B(t, V t[p] +
√
εRt; p) +

√
εV B

1 (t, V t[p]) = 0

=⇒ V B
1 (t, V t[p]) = 0. (23)

∂xV
B(t, V t[p̃]; p̃) = 0 =⇒ ∂xV

B(t, V t[p] +
√
εRt; p) +

√
ε∂xV

B
1 (t, V t[p]) = 1

∂xV
B
1 (t, V t[p]) = −Rt∂

2
xV

B(t, V t[p]; p) =⇒ Rt = − ∂xV
B
1 (t, V t[p])

∂2
xV

B(t, V t[p]; p)
. (24)

Since V B(t, .; p) is convex: ∂2
xV

B(t, .; p) ≥ 0, it follows from (22) and (24) that the sign of R̄t

and Rt are the opposite as the sign of ∂xV
B
1 (t, V̄t[p]) and ∂xV

B
1 (t, V t[p]), respectively. From

(19) we see that ∂xV
B
1 (t, V̄t[p]) ≥ 0 if K > 0, i.e. R̄t ≤ 0, and ∂xV

B
1 (t, V̄t[p]) ≤ 0 if K < 0,

i.e. R̄t ≥ 0. Similarly, ∂xV
B
1 (t, V t[p]) ≤ 0 if K > 0, i.e. Rt ≥ 0, and ∂xV

B
1 (t, V t[p]) ≥ 0 if

K < 0, i.e. Rt ≤ 0. Finally, we define: S̄t := R̄t/K ≤ 0, and St := Rt/K ≥ 0.

39



Proof of Proposition 2. Without the loss of generality, let’s only consider t = 0 and h such

that h0 = 0, we can always redefine t and shift p̃ by constant otherwise.

Suppose that
⋂

K>0(V 0[p̃], V̄0[p̃]) is open and containing x, hence V B(t = 0, x; p̃) > 0 for

all K > 0. We can find τx,ε ∈ T such that VB(0, x; τx,ε, p̃) ≥ V B(0, x; p̃)−ε and for any ε′ > 0

we can find δ > 0 such that P[τx,ε < δ] < ε′ for all K > 0. Additionally, from Proposition 1

we know that V̄0[p] ≥ V̄0[p̃]. Then:

V B(0, x; p̃) ≤ VB(0, x; τx,ε, p̃) + ε

≤ (1− ε′)e−rδE
[
max

{
V̄τx,ε [p]− pτx,ε −Khτx,ε , 0

}
|τx,ε ≥ δ

]
+ ε′V̄0[p] + ε.

Since ε′ and ε are arbitrarily small, while the first term is zero for all sufficiently large K >>

0, we have that V B(0, x; p̃) ≤ 0, a contradiction. Therefore,
⋂

K>0(V 0[p̃], V̄0[p̃]) contains no

open sets, proving limK→+∞
(
V̄0[p̃]− V 0[p̃]

)
= 0. In other words, for any x ̸= p̃0 there exists

K >> 0 sufficiently large such that the continue learning option is sub–optimal and the

buyer immediately purchase if x > p̃0 and exit if x < p̃0, proving V̄0[p̃] → p̃0+, V 0[p̃] → p̃0−

as K → +∞.

Suppose that K < 0, consider any x ∈ R, we note that

V B(0, x; p̃) ≥ VB(0, x; δ, p̃) ≥ e−rδE [max {vδ − pδ −Khδ, 0} |v0 = x] ≥ −e−rδ(Khδ + pδ)

where the last term is > 0 = V B(0, x; p) for all sufficiently negative K << 0. In the above,

δ denotes the simple policy of stopping exactly at time δ regardless of the valuation, and

the first inequality followed from the sub–optimality of δ. Therefore, for all sufficiently

negative K << 0, we have that it is optimal to not exit: i.e. V 0[p̃] < x for any x ∈ R, so

that limK→−∞ V 0[p̃] = −∞. On the other hand, we already know that V̄0[p̃] ≥ V̄0[p] from

Proposition 1, proving limK→−∞
(
V̄0[p̃]− V 0[p̃]

)
= +∞.

Proof of Lemma 3. Without the loss of generality, let t = 0, fix an x ∈ R, and shift the
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coordinate if necessary so that p0 = 0. Moreover, let’s suppose there exists the optimal

stopping policies τ ∗[p], τ ∗[l] ∈ T such that V B(0, x; p) = VB(0, x; τ ∗[p], p) and V B(0, x; l) =

VB(0, x; τ ∗[l], l) are the value functions under the p and l pricing policies, respectively. Let

T > 0 be such that maxt∈[0,∞) e
−rt
∣∣pt − pTt

∣∣ < ε/4 where pT ∈ PT is given by p over

[0, T − ε] and constant for all t ≥ T . By the bound supt∈[0,∞) |p′t| < λ1, we may take

T := 2
r
log(4λ1/ε). By Lemma 2, we have V B(0, x; p) ≤ V B(0, x; pT )+ ε/4, and also it’s easy

to see that VB(0, x; τ, pT ) ≤ VB(0, x; τ, p)+ε/4 for any τ ∈ T , so let’s assume without the loss

of generality that p ∈ PT hereafter and we will show that V B(0, x; p) ≤ VB(0, x; τ ∗[l], p)+ε/2.

We have

V B(0, x; p) = E
[
e−rτ∗[p] max{vτ∗[p] − pτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] < δ

]
P[τ ∗[p] < δ]

+ E
[
e−rτ∗[p] max{vτ∗[p] − pτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] ≥ δ

]
P[τ ∗[p] ≥ δ],

similarly, for V B(0, x; l) with l replacing p everywhere in the expression above, and

VB(0, x; τ ∗[l], p) = E
[
e−rτ∗[l] max{vτ∗[l] − pτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] < δ

]
P[τ ∗[l] < δ]

+ E
[
e−rτ∗[l] max{vτ∗[l] − pτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] ≥ δ

]
P[τ ∗[l] ≥ δ].

Now, we note that for τ < δ we have max{vτ − pτ , 0} ≤ max{vτ − lτ + δε/2, 0} ≤ max{vτ −

lτ , 0}+ δε/2, which implies

E
[
e−rτ∗[p] max{vτ∗[p] − pτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] < δ

]
≤ E

[
e−rτ∗[p] max{vτ∗[p] − lτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] < δ

]
+ δε/2.

Similarly, using max{vτ − lτ , 0} ≤ max{vτ − pτ , 0}+ δε/2 for τ < δ, we have:

E
[
e−rτ∗[l] max{vτ∗[l] − lτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] < δ

]
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≤ E
[
e−rτ∗[l] max{vτ∗[l] − pτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] < δ

]
+ δε/2.

On the other hand, since maxt∈[0,T ] |p′t| ≤ λ1 we have |pt| < λ1T and the purchase boundary

at any t cannot be higher than if the price was to decrease at maximum rate −λ1 after t.

From our study of linear pricing in Proposition 3, we have that

V̄ [−λ1] ≤ V̄ [−λ1]− V [−λ1] ≤ ¯̄V :=
λ1 +

√
λ2
1 + 2rσ2

2r
log

(
1 +

√
λ2
1 + 2rσ2

c

)

hence vτ∗[p] ≤ λ1T + ¯̄V , and consequently:

E
[
e−rτ∗[p] max{vτ∗[p] − pτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] ≥ δ

]
≤ e−rδ

(
2λ1T + ¯̄V + c/r

)
− c

r
< (1− δ)ε/4− c

r

≤ E
[
e−rτ∗[p] max{vτ∗[p] − lτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] ≥ δ

]
+ (1− δ)ε/4.

We can show the similar inequality with l instead of p as follows. If p′0 < 0 then the purchase

boundary is decreasing with time, at the rate no faster than −λ1, which means vτ∗[l] ≤ ¯̄V .

Also we have that lτ∗[l]e
−rτ∗[l] ≤ maxt∈[0,∞) |p′0|t · e−rt ≤ λ1e

−1/r. Therefore, we have

E
[
e−rτ∗[l] max{vτ∗[l] − lτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] ≥ δ

]
≤ e−rδ

(
¯̄V + c/r

)
+

λ1e
−1

r
− c

r
< (1− δ)ε/4− c

r

≤ E
[
e−rτ∗[l] max{vτ∗[l] − pτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] ≥ δ

]
+ (1− δ)ε/4.

For the case p′0 ≥ 0, we must have that the consumer’s expected payoff cannot be better

than if the price was to stay constant at p0 = 0, and in the constant price case we have

vτ∗[p0] = V̄ < ¯̄V . Continue using lτ∗[l]e
−rτ∗[l] ≤ λ1e

−1/r, we have:

E
[
e−rτ∗[l] max{vτ∗[l] − lτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] ≥ δ

]
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≤ e−rδ( ¯̄V + c/r) +
λ1e

−1

r
− c

r
< (1− δ)ε/4− c

r

≤ E
[
e−rτ∗[l] max{vτ∗[l] − pτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] ≥ δ

]
+ (1− δ)ε/4.

Putting everything back into the expression for V B(0, x) we had earlier yields:

V B(0, x; p) ≤ E
[
e−rτ∗[p] max{vτ∗[p] − lτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] < δ

]
P[τ ∗[p] < δ]

+ E
[
e−rτ∗[p] max{vτ∗[p] − lτ∗[p], 0} −

c

r

(
1− e−rτ∗[p]

)
|v0 = x, τ ∗[p] ≥ δ

]
P[τ ∗[p] ≥ δ]

+ δ(ε/4)P[τ ∗[p] < δ] + (1− δ)(ε/4)P[τ ∗[p] ≥ δ]

≤ VB(0, x; τ ∗[p], l) + ε/4 ≤ V B(0, x; l) + ε/4 = VB(0, x; τ ∗[l], l) + ε/4

= E
[
e−rτ∗[l] max{vτ∗[l] − lτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] < δ

]
P[τ ∗[l] < δ]

+ E
[
e−rτ∗[l] max{vτ∗[l] − lτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] ≥ δ

]
P[τ ∗[l] ≥ δ] + ε/4

≤ E
[
e−rτ∗[l] max{vτ∗[l] − pτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] < δ

]
P[τ ∗[l] < δ]

+ E
[
e−rτ∗[l] max{vτ∗[l] − pτ∗[l], 0} −

c

r

(
1− e−rτ∗[l]

)
|v0 = x, τ ∗[l] ≥ δ

]
P[τ ∗[l] ≥ δ]

+ δ(ε/4)P[τ ∗[l] < δ] + (1− δ)(ε/4)P[τ ∗[l] ≥ δ] + ε/4

≤ VB(0, x; τ ∗[l], p) + ε/2

where the third inequality followed from the optimality of τ ∗[l] under the pricing policy l.

Proof of Proposition 3. In the special case of linear pricing t 7→ pt := p0 +
√
εKt the value

function takes the form (8) over Ω as we can directly check that it satisfies the PDE of

(5). Let’s define K± :=
√
εK±

√
εK2+2rσ2

σ2 for convenience. The purchase and exit boundaries

ansatz take the form (9). We determine the unknown A1, A2, V̄ [
√
εK], and V [

√
εK] from

the boundary conditions

V B(t, V̄t) = V̄t − pt =⇒ A1e
K−V̄ [

√
εK] + A2e

K+V̄ [
√
εK] − c

r
= V̄ [

√
εK] (25)
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∂xV
B(t, V̄t) = 1 =⇒ A1K−e

K−V̄ [
√
εK] + A2K+e

K+V̄ [
√
εK] = 1 (26)

V B(t, V t) = 0 =⇒ A1e
K−V [

√
εK] + A2e

K+V [
√
εK] − c

r
= 0 (27)

∂xV
B(t, V̄t) = 0 =⇒ A1K−e

K−V [
√
εK] + A2K+e

K+V [
√
εK] = 0 (28)

From (27) and (28) we find that

A1 =
c

r

(
K+

K+ −K−

)
e−K−V [

√
εK], A2 =

c

r

(
K−

K− −K+

)
e−K+V [

√
εK]. (29)

Substituting (29) back into (26), we obtain the equation to be solved for (V̄ [
√
εK]−V [

√
εK]):

eK+(V̄ [
√
εK]−V [

√
εK]) − eK−(V̄ [

√
εK]−V [

√
εK]) =

r

c
· K− −K+

K−K+

, (30)

we note that the LHS is an increasing function, hence the solution always exists. Finally, we

find V̄ [
√
εK] by substituting (29) back into (25) and simplify:

V̄ [
√
εK] =

1

K−
+

c

r

(
eK+(V̄ [

√
εK]−V [

√
εK]) − 1

)
(31)

from this it is simple to find V [
√
εK]. Equation (30) and (31) is equivalent to the following

non–linear system of equations:


e

√
εK+

√
εK2+2rσ2

σ2 (V̄ [
√
εK]−V [

√
εK]) − e

√
εK−

√
εK2+2rσ2

σ2 (V̄ [
√
εK]−V [

√
εK]) =

√
εK2 + 2rσ2

c
c

r

(
e

√
εK+

√
εK2+2rσ2

σ2 (V̄ [
√
εK]−V [

√
εK]) − 1

)
− V̄ [

√
εK] =

√
εK +

√
εK2 + 2rσ2

2r
(32)

When
√
εK ∼ 0, we may obtain a simple expression for V̄ [

√
εK] and V [

√
εK] to the

ε–order. We substituting the ansatz (10) into (30), (31), and comparing the zeroth–order

and
√
ε–order terms we get the claimed expression for S̄ := R̄/K, S := R/K. The signs of

S̄ and S followed from the Proposition 1, but one can also verify explicitly.
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Proof of Proposition 4. From the first equation of (32), when c → 0+, the RHS

becomes large which means V̄ [
√
εK] − V [

√
εK] becomes large, and the LHS is ∼

e
√
εK+

√
εK2+2rσ2

σ2 (V̄ [
√
εK]−V [

√
εK]). Therefore, the second equation of (32) together with (9) gives:

V̄t = p0 +
√
εKt+

√
εK2 + 2rσ2 −

√
εK

2r
.

and V t = −∞. Therefore, we only have one linearly moving boundary V̄t. Let’s assume

throughout also that p0 ≥ g. The solution U(t, v) to the heat equation with the single

linearly moving absorbing boundary with initial condition U(t = 0, v) = δ(v − x), x ≤ V̄0, is

well–known:

U(t, v) =
exp

(
−

√
εK
σ2 (v − x−

√
εKt)− εK2

2σ2 t
)

σ
√
2πt

(
e−

(v−
√
εKt−x)2

2tσ2 − e−
(v−

√
εKt+x−2V̄0)

2

2tσ2

)
.

Therefore, the purchase probability flux is:

−σ2

2
∂vU(t, V̄t) =

V̄0 − x

σ
√
2πt3

exp

(
−
(
V̄t − x

)2
2tσ2

)
.

It is now straightforward to compute the expected firm’s payoff at t = 0:

VS(x; p0, K) := −σ2

2

∫ ∞

0

e−ms(ps − g)∂vU(s, V̄s)ds

=

(
p0 − g +

√
εK√

2mσ2 + εK2

(
p0 − x+

√
εK2 + 2rσ2 −

√
εK

2r

))

× exp

(
−

(√
εK +

√
2mσ2 + εK2

σ2

)(
p0 − x+

√
εK2 + 2rσ2 −

√
εK

2r

))
, (33)

for x ≤ V̄0, otherwise if x > V̄0 then we have VS(x; p0, K) = p0−g. In the special case where
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m = 0, we have

VS(x; p0, K) =



(
2p0 − g − x+

√
εK2 + 2rσ2 −

√
εK

2r

)

× exp

(
−2

√
εK

σ2

(
p0 − x+

√
εK2 + 2rσ2 −

√
εK

2r

))
,

√
εK > 0

p0 − g,
√
εK = 0

x− g −
√
εK2 + 2rσ2 −

√
εK

2r
,

√
εK < 0

.

For any fixed p0, we can approach the supremum 2p0+
σ√
2r
−g−x ≥ p0−g of VS by choosing

√
εK ≳ 0 as close to 0 as possible, and earning an extra of

(
2p0 +

σ√
2r

− g − x
)
− (p0− g) =

p0 − x + σ√
2r
. If we can also vary the initial price p, then it is optimal to set p as large as

possible, i.e. the optimal price is unbounded.

For m > 0, the optimal K is now bounded from 0. This can also be seen for a general p

by computing:

∂VS

∂K
(x; p0, K = 0) = e

−
√
2m
σ

(
p0−x+ σ√

2r

)

×

(
p0 − x+ σ/

√
2r

σ
√
2m

− (p0 − g)

(
p0 − x+ σ/

√
2r − (σ/r)

√
m/2

σ2

))
,

we can see that this is always > 0 for sufficiently small and sufficiently large m > 0.

Proof of Proposition 5. The standard solution U0 to the heat equation (11) with 2 absorbing

non–moving boundaries at V̄0 := p0+ V̄ [
√
εK], V 0 := p0+V [

√
εK], and the initial condition

U0(0, v) = δ(v − x) is given by Karatzas and Shreve (2012):

U0(t, v) =
1

σ
√
2πt

+∞∑
k=−∞

[
e−

(v−x+2k(V̄0−V 0))
2

2tσ2 − e−
(v+x−2V 0+2k(V̄0−V 0))

2

2tσ2

]
. (34)
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Equivalently:

U0(t, v)dv = P
[
x+ σWt ∈ dv, V 0 < x+ σWs < V̄0, s ∈ [0, t]

]
.

Instead of moving the boundary according to
√
εKt we may consider the consumer valuation

process to be the Brownian process with drift starting at x: ṽt = x−
√
εKt+σWt with fixed

absorbing boundaries at V̄0, V 0. If {Wt} is the standard Brownian process on (Ω,F ,Σ,P)

then {x + σWt} is the Brownian process with drift starting at x, i.e. {ṽt} on (Ω,F ,Σ,Q)

where

dQ
dP

∣∣∣
Ft

= exp

(
−
√
εK

σ
Wt −

εK2

2σ2
t

)
.

Consequently, we have that the solution U to the heat equation (11) with moving boundaries

V̄t, V t is given by

U(t, v)dv = P
[
ṽt ∈ v −

√
εKt+ dv, V 0 < ṽs < V̄0, s ∈ [0, t]

]
= Q

[
x+ σWt ∈ v −

√
εKt+ dv, V 0 < x+ σWs < V̄0, s ∈ [0, t]

]
= exp

(
−
√
εK

σ2
(v − x−

√
εKt)− εK2

2σ2
t

)
U0(t, v −

√
εKt)dv

Therefore, the purchase probability flux is:

−σ2

2
∂vU(t, V̄t) =

+∞∑
k=−∞

(2k + 1)(V̄0 − V 0)− (x− V 0)

σ
√
2πt3

e
2
√
εKk

σ2 (V̄0−V 0)e−
((2k+1)(V̄0−V 0)−(x−V 0)+

√
εKt)2

2tσ2 .

(35)

The term–by–term differentiation is justified at v = V̄t for any fixed x ∈ (V 0, V̄0) because

0 < |V̄0 − x| < |V̄0 − V 0|, hence the series representation of U0(t, v −
√
εKt), and the

derivative series both converge absolutely and uniformly for all v in some neighborhoods of

V̄t and t ∈ [0,∞). We now compute the seller’s expected profit:

Claim 1. The seller’s expected profit from the consumer initially at x ∈ (V 0, V̄0) is:
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VS(x; p0, K) =

(
p0 − g −

√
εK√

2mσ2+εK2 (V̄0 + x− 2V 0)
)
e−

√
εK+

√
2mσ2+εK2

σ2 (V̄0−x)

1− e−
2
√

2mσ2+εK2

σ2 (V̄0−V 0)

+

2
√
εK√

2mσ2+εK2 (V̄0 − V 0)e
−

√
εK+

√
2mσ2+εK2

σ2 (V̄0−x)(
1− e−

2
√

2mσ2+εK2

σ2 (V̄0−V 0)

)2

−

(
p0 − g −

√
εK√

2mσ2+εK2 (V̄0 − x)
)
e−

√
εK+

√
2mσ2+εK2

σ2 (V̄0−V 0)e+
√
εK−

√
2mσ2+εK2

σ2 (x−V 0)

1− e−
2
√

2mσ2+εK2

σ2 (V̄0−V 0)

−
2
√
εK√

2mσ2+εK2 (V̄0 − V 0)e
−

√
εK+

√
2mσ2+εK2

σ2 (V̄0−V 0)e+
√
εK−

√
2mσ2+εK2

σ2 (x−V 0)(
1− e−

2
√

2mσ2+εK2

σ2 (V̄0−V 0)

)2 , (36)

if m > 0 or K ̸= 0, and VS(x; p0, K) = (p0 − g)
(

x−V 0

V̄0−V 0

)
if m = 0, K = 0. On the other

hand, if x ≤ V 0 then VS(x; p0, K) = 0, and if x ≥ V̄0 then Vs(x; p0, K) = p0 − g.

Proof. We shall only cover the non–trivial case where x ∈ (V 0, V̄0). First, let’s assume that

either m > 0 or K ̸= 0. We compute VS(x; p0, K) by substituting (35) into (12):

VS(x; p0, K) = −σ2

2

∫ ∞

0

e−ms(ps − g)∂vU(s, V̄s)ds

=
+∞∑

k=−∞

(
(2k + 1)(V̄0 − V 0)− (x− V 0)

)
e

2
√
εKk

σ2 (V̄0−V 0)

×
∫ +∞

0

(p0 +
√
εKs− g)

σ
√
2πs3

e−ms− ((2k+1)(V̄0−V 0)−(x−V 0)+
√

εKs)2

2sσ2 ds

=
+∞∑
k=0

(
p0 − g +

√
εK√

2mσ2 + εK2

(
(2k + 1)(V̄0 − V 0)− (x− V 0)

))

× exp

(
+

√
εK

σ2
· 2k(V̄0 − V 0)−

√
εK +

√
2mσ2 + εK2

σ2

(
(2k + 1)(V̄0 − V 0)− (x− V 0)

))

−
+∞∑
k=1

(
p0 − g +

√
εK√

2mσ2 + εK2

(
(2k − 1)(V̄0 − V 0) + (x− V 0)

))

× exp

(
−
√
εK

σ2
· 2k(V̄0 − V 0) +

√
εK −

√
2mσ2 + εK2

σ2

(
(2k − 1)(V̄0 − V 0) + (x− V 0)

))
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In the second equality, we switched the order of summation and integration, which can be

justified by Fubini’s theorem for m > 0 or K ̸= 0. The resulting infinite series can be

evaluated using standard geometric series results to yield (36). If m = 0 and K = 0, then it

is known (see Branco et al. (2012)) that the seller’s expected profit is (p0 − g)
(

x−V 0

V̄0−V 0

)
.

In the limit V 0 → −∞ (i.e. the limit c → 0) (36) reduces to (33) we previously studied.

Unlike in the single boundary case, in the presence of the exit boundary, the expected seller’s

profit is not only continuous at K = 0, but also differentiable, even when m = 0, as we will

show below. We now focus on the m = 0 case.

From (36) we have that VS(x; p0, K < 0)|m=0 is given by (13), and that:

VS(x; p0, K > 0)|m=0 =

(p0 − g − (V̄0 + x− 2V 0)) exp
(
−2

√
εK

σ2 (V̄0 − x)
)

1− exp
(
−2

√
εK

σ2 (V̄0 − V 0)
) +

2(V̄0 − V 0) exp
(
−2

√
εK

σ2 (V̄0 − x)
)

(
1− exp

(
−2

√
εK

σ2 (V̄0 − V 0)
))2

−
(p0 − g − (V̄0 − x)) exp

(
−2

√
εK

σ2 (V̄0 − V 0)
)

1− exp
(
−2

√
εK

σ2 (V̄0 − V 0)
) −

2(V̄0 − V 0) exp
(
−2

√
εK

σ2 (V̄0 − V 0)
)

(
1− exp

(
−2

√
εK

σ2 (V̄0 − V 0)
))2 . (37)

Both (13) and (37) are valid expressions for all K ̸= 0, and with some works, we can show

them to be equal for all K ̸= 0. This proves VS(x; p0, K) is given by (13) for all K ̸= 0.

Proof of Lemma 4. We can compute that

∂p∗0
∂K

(x,K = 0) =
1

12rσ

3σ − 3

√
2c2

r
+ σ2 sinh−1

√
rσ2

2c2
− σ

(
sinh−1

√
rσ2

2c2

)2
 ≤ 0

where the inequality is strict everywhere except at
√
rσ/c = 0. Given any q, r, c, σ2 such

that
√
rσ > 0 we can find sufficiently small λ1 > 0 such that p∗0(x, .) is a decreasing function

for K ∈ [−λ1,+λ1]. If necessary, we can always restrict λ1 > 0 to be smaller (i.e. λ1 < 1)

to ensure that the buyer’s respond ε–optimality to K ∈ [−λ1,+λ1] according to Proposition
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3. Any local maximum point of VS(x; ., .) would take the form (p∗0(x;K
∗), K∗) where K∗ :=

argmaxK VS(x; p∗0(x,K), K), and p∗0(x; 0) = p̂(x), hence p∗0 < p̂,K∗ ≳ 0, or p∗0 > p̂,K∗ ≲ 0.

The existence of parameters q, r, c, σ2 which give examples of maximum point (p∗0, K
∗)

satisfying p∗0 < p̂,K∗ ≳ 0, or p∗0 > p̂,K∗ ≲ 0 can be found from Figure 2. In particular,

at the boundary between region III and VI (or the boundary between region II and III),

(p∗0, K
∗) = (p̂, 0) is a local maximum, and a unique one if λ1 > 0 is sufficiently small. Due to

the continuity of VS(.; ., .) and p∗0(., .), by choosing a slightly higher q, we obtain an example

of a maximum point with p∗0 > p̂,K∗ ≲ 0, while choosing a slightly lower q, we obtain an

example of a maximum point with p∗0 < p̂,K∗ ≳ 0.

Proof of Proposition 6. We first introduce an intuitive technical result.

Lemma 5. Consider the parameters m, r, c, σ2, and ε > 0, such that V > −∞ (i.e. c > 0).

There exists x̄ = x̄(m, r, c, σ2) > 0 such that for all x ≥ g + x̄, there exists an ε–equilibrium:

({τ ∗[p] ∈ T }p∈PT
, p∗ ∈ PT ) such that V t[p

∗] ≥ g, for all t ∈ [0,∞).

Proof. Suppose by contrary that such x̄ > 0 does not exist. Given any x ∈ R, we can find

p∗ ∈ PT such that VS(x; τ ∗[p∗], p∗) ≥ V S(x)− ε, where τ ∗[p] ∈ T satisfies VB(t, x; τ ∗[p], p) ≥

V B(t, x) − ε, and let’s denote the corresponding exit boundary by V t[p
∗]. By assumption,

we have V t[p
∗] < g for some t ∈ [0, T ]. But since V [p∗] is continuous, for a sufficiently

large ∆ > 0 we must have V t[p
∗] + ∆ > g for all t ∈ [0, T ]. But then by assumption,

p∗ + ∆ ∈ P cannot be an ε–optimal pricing strategy of the seller when the buyer has

an initial valuation x + ∆ because V t[p
∗ + ∆] = V t[p

∗] + ∆ > g for all t, so there must

exist p∗∗ ∈ P such that VS(x + ∆; τ ∗[p∗∗], p∗∗) > VS(x + ∆; τ ∗[p∗], p∗ + ∆). But since

VS(x+∆; τ ∗[p∗], p∗ +∆) = VS(x; τ ∗[p∗], p∗) + ∆, we have that

VS(x; τ ∗[p∗∗], p∗∗ −∆) = VS(x+∆; τ ∗[p∗∗], p∗∗)−∆

> VS(x+∆; τ ∗[p∗], p∗ +∆)−∆ = VS(x; τ ∗[p∗], p∗) ≥ V S(x)− ε.

50



Since ε > 0 is arbitrary small, we have VS(x; τ ∗[p∗∗], p∗∗ −∆) ≥ V S(x). Relabelling p∗∗ −∆

as p∗ and repeating the argument above again we may argue that the last inequality is strict,

thus establishing a contradiction. In particular, p∗∗ = p∗ +∆′ must be an ε–optimal pricing

strategy for the seller, satisfying V t[p
∗∗] > g for all t ∈ [0,∞), when the buyer has an initial

valuation x+∆′ > V 0[p
∗] + ∆′ > g for all ∆′ > ∆, and we may define x̄ := x+∆− g.

Equation (15) in the proposition follows from Proposition 1 and Proposition 2. Since

we know that as K increases, the corresponding purchase and exit boundaries V̄t[p0 +Kh]

and V t[p0 +Kh] will monotonically decrease and increase toward p0 +Kht, respectively. If

x > p0 then only the purchase boundary V̄0[p0 + Kh] will reach x as K → ∞, giving the

seller the payoff p0− g. Likewise, for x ≤ p0 only V 0[p0+Kh] will reach x as K → ∞ giving

the seller the payoff 0.

Let’s define x̄ := x̄(m, r, c, σ2) as in Lemma 5, then if x ≥ g+ x̄ we can find an ε–optimal

strategy p ∈ PT satisfying V t[p] > g for all t ∈ [0,∞). It follows that

VS(x; τ ∗[p], p) = E
[
e−mτ∗[p](pτ∗[p] − g) · 1vτ∗[p]≥pτ∗[p] | v0 = x

]
≤ E

[(
pτ∗[p] − g

)
· 1vτ∗[p]≥pτ∗[p] | v0 = x

]
≤ E

[
vτ∗[p] − g | v0 = x

]
= x− g. (38)

The first inequality followed from removing the discounting factor. The second inequality

followed by noting that if vt hits the purchase boundary V̄t[p] first we would have vτ∗[p]−g ≥

pτ∗[p] − g, and if vt hits the exit boundary first we would have vτ∗[p] < pτ∗[p], so vτ∗[p] −

g = V τ∗[p][p] − g ≥ 0 = (pτ∗[p] − g) · 1vτ∗[p]≥pτ∗[p] . The final equality followed from the

Martingale stopping theorem since
∣∣vt∧τ∗[p]∣∣ is bounded by maxs∈[0,∞){|V s[p]| ,

∣∣V̄s[p]
∣∣} =

maxs∈[0,T ]{|V s[p]| ,
∣∣V̄s[p]

∣∣} where the latter is finite because both boundaries are continuous

over [0, T ] and are constant over [T,∞) by the definition of PT . So x − g ≥ V S(x) − ε for

any arbitrary ε > 0, hence we conclude that V S(x) = x− g. The claim that this supremum

can be approached by (16) follows from (15).
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