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Abstract

Consumers frequently search for information before making decisions. Since their search and
purchase decisions depend on the information environment, firms have a strong incentive to influ-
ence it. This paper endogenizes the consumer’s information environment from the firm’s perspective
and endogenizes the search decision from the consumer’s perspective. We consider a dynamic model
where a firm sequentially persuades a consumer to purchase the product. The consumer only wishes
to buy the product if it is a good match. The firm designs the information structure. Given the
endogenous information environment, the consumer trades off the benefit and cost of information
acquisition and decides whether to search for more information. Given the information acquisition
strategy of the consumer, the firm trades off the benefit and cost of information provision and
determines how much information to provide. This paper characterizes the optimal information
structure under a general signal space. We find that the firm only smooths information provision
over multiple periods if the consumer is optimistic about the product fit before searching for in-
formation. Moreover, if the search cost for the consumer is high, the firm designs the information
such that the consumer will be certain that the product is a good match and will purchase it after
observing a positive signal. If the search cost is low, the firm provides noisy information such that
the consumer will be uncertain about the product fit but will still buy it after observing a positive

signal.



1 Introduction

With the rapid proliferation of digital technologies and information channels, it is increasingly
common for consumers to seek detailed information before making a decision. More information
can lead to less uncertainty and improve decision-making. Since consumers’ search and purchase
decisions depend on the information environment, firms have a strong incentive to influence it.
Advertisers want to choose the advertising content to raise consumers’ awareness and interest.
Platforms want to design the website to attract traffic. Thus, the consumer faces an endogenous
information environment. For example, a consumer considering purchasing a pair of shoes may
search on the internet to find out whether or not the item matches his needsl] The seller can
influence consumers’ search and purchase decisions by bidding for search advertising spots to per-
suade the consumer. Even if the consumer does not purchase after seeing an ad, the seller can
keep persuading the consumer through retargeting. The seller decides how much and what kind
of information to provide to the consumer. For example, they frequently retarget consumers who
have added the product to the shopping cart/list, but only target many other consumers only once.
Some sellers show very precise information to consumers, while others add more noise to their ads.
At the same time, the consumer spends time and effort searching. He searches voluntarily and only
if he anticipates enough gain from it.

The main contribution of this paper is to endogenize the consumer’s information environment
from the firm’s perspective and endogenizes the search decision from the consumer’s perspective.
By considering consumer search and firm information provision simultaneously, we wish to explain
why the information environment of consumer search differs across various scenarios. We want
to understand when the firm prefers to provide noisy rather than precise information and when
it prefers to communicate with consumers for a longer time. We find that the firm provides
information incrementally rather than only once if the consumer is optimistic about the product
fit before searching for information. If the search cost for the consumer is high, the firm designs
the information such that the consumer will be certain that the product is a good match and will
purchase it right after observing a positive signal. If the search cost is low, the firm provides noisy
information such that the consumer will be uncertain about the product fit but will still buy the
product right after observing a positive signal.

Specifically, this paper considers a dynamic model where a receiver (consumer) makes a binary
decision between action G (e.g., purchase the product) and B (outside option). There are two
states, good (the product is a good match) and bad (the product is a bad match). A sender (firm)
always prefers G and sequentially persuades the receiver to take that action. In contrast, the
receiver only wishes to take action G if the state is good and his participation (search) is voluntary.
Neither the sender nor the receiver knows the state initially but have a common prior belief about

it. The receiver can incur costs to search for more information about the state. The updated belief

DWe refer to the information provider (seller) as “she” and the decision-maker (consumer) as “he” throughout the
paper.



helps him make decisions. If the receiver observes a negative signal, he knows that the state is less
likely to be good and will not take action G without the arrival of new information. If the receiver
observes a positive signal, he knows that the state is more likely to be good, and the expected
payoff of taking action G increases.

The sender designs the information structure. Given the endogenous information environment,
the receiver trades off the benefit and cost of information acquisition and decides whether to
search for more information. The receiver is forward-looking and forms rational expectations of the
sender’s strategy. The sender can incur higher costs to convince the receiver to take action G with
a higher likelihood. Given the information acquisition strategy of the receiver, the sender trades
off the benefit and cost of information provision and determines how much information to provide.
Therefore, the receiver and the sender simultaneously trade off the benefit and cost of information
acquisition /provision.

This paper characterizes the optimal information provision strategy of the sender and the op-
timal information acquisition strategy of the receiver. There are two periods in the main model.
In each period, the sender chooses the information structure, and the receiver chooses whether
to search for more information or make a decision. Instead of looking at specific parameters of
the search environment, we study the design of the information environment under general signal
space and characterize the optimal information structure among all feasible information policies.
Consumer endogenous participation is a feature of this paper relative to the standard Bayesian per-
suasion literature. We develop a constrained non-linear programming method to solve the sender’s
information design problem, because the widely-used concavification method due to Kamenica and
Gentzkow (2011) cannot solve it when the receiver’s particiaption is strategic.

In equilibrium, the sender induces the receiver to take action G immediately upon observing
a positive signal. This way, the sender saves the expected search time and does not need to
compensate the receiver for a higher expected search cost. We assume that the information provision
cost is convex in the amount of persuasion (the likelihood of a positive signal), which gives the
sender an incentive to spread information provision over multiple periods. The sender extracts all
the surplus from the receiver when she provides information in both periods, while she may leave
some surpluses to the receiver when she provides information in only one period. However, the
longer expected search time of the receiver will discourage him from searching if the likelihood of
getting a positive ex-post payoff is low. Hence, the sender only smooths information provision if
the prior belief is high. If the search cost for the receiver is high, the sender designs the information
such that the receiver will be certain that the state is good and will take action G right after
observing a positive signal. If the search cost is low, the sender provides noisy information such
that the receiver will be uncertain about the state but still takes action G right after observing a
positive signal.

We compare the profit-maximizing structure with the efficient (social welfare maximizing) infor-

mation structure. When the search cost is high, the optimal strategy of the sender also maximizes



social welfare because both the sender and the social planner choose the minimal amount of per-
suasion that can induce the receiver to search. When the search cost is lower, the two information
structures are different because the sender does not internalize the receiver’s welfare.

In the online appendex, we also consider the implications of discounting and extend the two-

period model to an infinite-period model. The main insights extend to those richer models.

1.1 Related Literature

There is a large stream of literature on optimal information acquisition. In particular, consumer
search has raised growing interest both theoretically (Stigler 1961, Weitzman 1979, Wolinsky 1986,
Moscarini and Smith 2001, Branco et al. 2012, Ke et al. 2016, Ke and Villas-Boas 2019, and Jerath
and Ren 2023) and empirically (Hong and Shum 2006, Kim et al. 2010, 2017, Seiler 2013, Honka
2014, Ma 2016, Chen and Yao 2017, Honka and Chintagunta 2017, Seiler and Pinna 2017, Ursu et al.
2020, Moraga-Gonzélez and Wildenbeest 2021, Morozov 2021, Morozov et al. 2021, and Yavorsky
et al. 2021). In the above papers, the information environment is exogenous. Several papers study
consumers’ endogenous information acquisition. The consumer chooses both the search rule and
the information environment. In Zhong (2022a), the decision-maker gradually gathers information
about one product. Poisson learning is optimal for him. In Guo (2021), the consumer sequentially
search for information about multiple products and determines how much to evaluate each product.
Because the strategy and the outcome depend on the information structure, other payoff-relevant
parties (e.g., firms) have a strong incentive to influence it. We take this into account by having the
firm endogenously determine the information environment of the consumer.

Some papers investigate the design of the search environment from the firm’s perspective. In
Dukes and Liu (2016) and Kuksov and Zia (2021), the platform or the seller select the search cost
to influence the consumer’s search strategy. In Villas-Boas (2009), Liu and Dukes (2013), and
Kuksov and Lin (2017), the product line design of the seller impacts consumer’s search decision.
Villas-Boas and Yao (2021) consider the optimal retargeting strategy of the firm which advertises
to consumers who have a high likelihood of considering the firm’s product. By advertising, the
firm increases the frequency of consumers’ learning information and the ability to track consumers.
In Zhong (2022b), the platform recommends relevant sellers based on match values and prices to
consumers. The platform designs the search algorithm by picking the match precision and the
relative importance between prices and match values. Comparing the welfare outcomes among
information structures emphasizing different vehicle characteristics under the counterfactuals of
their structural model, Gardete and Hunter (2020) find that emphasizing the vehicle’s history and
obfuscating price information improves both consumer and firm welfare. Mayzlin and Shin (2011)
consider a setting where the consumer can obtain an exogenously given signal by searching for
information about the product quality. They find that uninformative advertising may serve as an
invitation for the consumer to search. In Yao (2023), the firm can affect consumers’ belief through

informative advertising before they engage in costly search. In related literature on choice overload,



the seller determines the amount of information provided to the consumer (Kuksov and Villas-Boas
2010, Branco et al. 2016). The decision of the seller affects the consumer’s search cost.

While the above papers are related to our paper, there are substantial differences. Instead of
looking at specific parameters of the search environment, we study the design of the information
environment under a general signal space. We characterize the optimal information structure among
all feasible information policies. In the existing literature, the consumer either fully observes the
value of a product/attribute or gets a noisy signal from an exogenously specified distribution. In
contrast, in our paper, the firm determines the distribution of the signal. The optimal information
structure can be asymmetric and may not correspond to standard distributions.

We use a belief-based method of modeling information provision, first introduced by Aumann
and Maschler (1995) and Kamenica and Gentzkow (2011) in the Bayesian persuasion and infor-
mation design literatureﬂ The sender picks a mean-preserving spread of the prior belief as the
posterior belief, which simplifies the analysis. Some papers have studied the persuasion problem
where either the receiver or the sender incurs costs. For example, Ball and Espin-Sénchez (2022)
study a persuasion problem in which the sender chooses from a restricted set of feasible experi-
ments, and the experiment can be costly. In Degan and Li (2021), the sender’s persuasion cost
depends on the precision of the signal. Lipnowski et al. (2020, 2022) and Wei (2021) consider a
static persuasion problem in which a rationally inattentive receiver incurs information processing
costs. Jerath and Ren (2021) consider a static model in which the consumer chooses the opti-
mal information structures, taking into account that he needs to incur a cost to search for and
process the signals. Instead of directly providing information, the firm influences the consumer’s
information environment by imposing constraints on the precision of the signals. Berman et al.
(2022) study the information design of the recommendation algorithms under endogenous pricing
and competition. Gentzkow and Kamenica (2014) extend the widely-used concavification approach
of Kamenica and Gentzkow (2011) to the setting where the sender’s cost is posterior-separable.

Some recent papers extend the static setting of Bayesian persuasion to the dynamic one. In those
papers, either the receiver participation is enforced, or the persuasion cost is zero or a constant(Ely
2017, Renault et al. 2017, Che et al. 2020, Ely and Szydlowski 2020, Orlov et al. 2020, Iyer and
Zhong 2021, and Bizzotto et al. 2021). We contribute to this literature by allowing the receiver
to search for information voluntarily. In addition to the receiver’s search cost, the sender incurs a
persuasion cost in our paper. The sender may need to convince the receiver to search or speed up
the receiver’s learning by incurring a higher cost. Therefore, we can investigate the sender’s optimal
trade-off between the benefit and cost of information provision. A common finding in the dynamic
persuasion literature, when there is no receiver strategic search (e.g., Ball 2023), is that the sender
designs a delayed information policy, which uses future information as a reward to incentivize the
receiver to take desired actions. In contrast, the sender does not need dynamic commitment power

in our paper. She uses current information to incentivize the receiver to search and eventually take

2 See Bergemann and Morris (2019) for a survey of this literature.



the desired action.

We cannot use the concavification approach because the receiver’s participation is strategic.
Instead, we develop a constrained non-linear programming method to solve the sender’s information
design problem in the presence of consumer strategic search. Because we consider a dynamic
problem, different information structures may correspond to different forms of sender’s objectives
and receiver’s participation constraints. To reduce the dimensionality of the problem, we first show
that the optimal information structure must induce the receiver to take action G immediately
after receiving a positive signal. This qualitative property greatly simplifies the problem as we can
limit our attention to such information structures. Nevertheless, the constraints are non-linear and
consist of multiple variables, making the optimization problem challenging. To make the problem
tractable, we transform the sender’s optimization problem into three subproblems, each with one
constrained variable and linear constraints. We then select the global solution by establishing
single-crossing results to compare the local solutions to each of the subproblems.

Ke et al. (2022) study how online platforms should design the information in the presence
of consumer search. In their paper, the information impact both consumer search and targeted
advertising and allow them to study the trade-off between sales commission and advertising revenue.
The firm designs the information to manipulate consumer’s belief prior to search. The consumer
always process this information but can search for more information strategically given an exogenous
information structure (full revelation upon search). Our contribution is to integrate the information
provision with consumer search and fully endogenize the search environment.

The remainder of the paper is organized as follows. Section 2 presents the main model. Section
3 introduces and analyzes some benchmarks. Section 4 characterizes the optimal information
provision strategy and the equilibrium outcomes of our problem. Section 5 characterizes the efficient
information provision strategy and summarizes the information distortion when the sender rather

than the social planner designs the information structure. Section 6 concludes.

2 The Model

2.1 States, Actions, and Payoffs

There are two players, a sender and a receiver, and two states, good (g) and bad (b). The
receiver ultimately makes a binary decision between GG and B. The sender wishes to persuade the
receiver to take action G regardless of the state, while the receiver wishes to match the decision
with the state (taking action G(B) when the state is g(b)). There is no discounting. The payoffs

of the decision for the players are the following:



(sender payoff, receiver payoff) action G action B

state g (p,vg) (0,0)
state b (p,vp) (0,0)

The sender earns a positive payoff, p > 0, if the receiver takes action G. The receiver’s payoff
is positive if he takes action G when the state is g, v, > 0, and negative if he takes action G
when the state is b, v, < 0. Both players get zero payoff if the receiver takes the action B (which
can be thought of as an outside option). We assume without loss of generality that vy =1+ vbﬁ
Neither the sender nor the receiver knows the state initially but have a common prior belief about
it, up := P(the state is g) € (0,1). It summarizes all information the receiver has before searching
for the sender’s information. In each period ¢ € {0,1}, the sender determines and commits to
the information structure of the current period but cannot commit to the information structure in
the future. The receiver can search for information (action S) before deciding. The information
acquisition is costly but helps the receiver make better decisions. If the receiver chooses to search,
he incurs a search cost ¢ and observes the realization of a binary signal s € {0,1} that reveals some
information about the state. By choosing P[s = 1|g] and P[s = 1]b], the sender uniquely determines
the signal. We order the value of the signal such that P[s = 1|g] > P[s = 1[b]. Hence, s = 1
corresponds to a positive signal and s = 0 corresponds to a negative signal. Players update the
belief about the state according to Bayes’ rule after the realization of the signalﬁ The game ends
whenever the receiver makes a decision (G or B). Figure |1]illustrates the timing of the game.

information is revealed;

sender picks the receiver searches of  sender picks the information structure; information is revealed;
information structure makes a decision receiver searches or makes a decision receiver makes a decision

L | 1 |
t=0 t=1

v

Figure 1: Timing of the Game

Analogous to Proposition 1 of Kamenica and Gentzkow (2011), we can work with mean-
preserving posterior beliefs rather than the specific signal structure to simplify the analysis. Specif-
ically, the existence of a binary signal is equivalent to the existence of a binary-valued posterior
belief whose expectation is equal to the prior belief. We state this result and its proof formally in
the online appendix. Denote the belief at the beginning of each period by p;. In each period, with
probability A;, the receiver observes a positive signal and the belief increases to ;. We refer to A,
as the probability of a positive signal and ji; as the belief after observing a positive signal. With

probability 1 — A, the receiver observes a negative signal, and the belief decreases to us. We refer

B This assumption is without loss of generality because we can normalize the payoffs by vy — vs.

BWe can assume without loss of generality that the sender also observes the signal realization. This is because
the sender can perfectly infer the signal realization from the receiver’s action under the optimal signal structure,
according to Proposition E



to uy as the belief after observing a negative signal.

Since the sender designs and provides information to the receiver while the receiver does not
need to collect the information, different information should cost differently for the sender but not
for the receiver. Therefore, we assume that the receiver incurs a flow cost of ¢ per period of search,
while the sender’s cost of information provision is increasing and convex in the probability of a
positive signal, K = K (). It is relatively cheap for her to provide information with a low A. The

marginal cost increases at an increasing rate as \ increases.
Assumption K(-) € C2(R4), K'(A\) > 0, K"()\) > 0, K(0) = 0, /\lin? K'(X\) = +o0, /\liré1+ K'(\) = 0.
—1- —

Throughout this paper, we refer to the likelihood of a positive signal as the amount of per-
suasion. The total payoff for each player is the payoff of the decision net of the information
provision/acquisition costs. The receiver is forward-looking and forms rational expectations about
the sender’s strategy in the future. To avoid the trivial case in which the sender provides no infor-
mation and the receiver always takes the sender’s desired action, we assume that povg+ (1 —po)vy <
0 < pg < —vp. So, the receiver will never take action G without searching. We also assume that

the search cost is not too high, ¢ < v4. Otherwise, the receiver will never search.

Sender’s Convex Cost

To persuade the receiver to take action GG, the sender wants to increase the receiver’s belief
about the good state. It is easy to provide information that increases the receiver’s belief with a
low probability but hard to do so with a high probability, and impossible to always increase the
receiver’s belief. So, we assume that the sender’s information provision cost is increasing and convex
in the amount of persuasion. The convex cost gives the sender an incentive to spread information
provision over multiple periods, and is common in the literature (e.g., Robert and Stahl 1993).
In section we connect our model to three real-world examples and discuss why the sender’s
cost may be convex. In section 3.2} we work out an alternative model with a constant information
provision cost and show that the convexity of the sender’s cost plays a critical role when the sender
persuades the receiver gradually. However, it neither means that the sender’s cost always has this
particular form nor that we need to take this assumption literally. Other cost functions, such as
constant cost, may be more appropriate in other settings. Especially in settings where the sender
persuades the receiver only once, a constant cost may be the driving force. Nevertheless, in dynamic
persuasion problems, our assumption captures the sender’s incentive to smooth information in a
simple way and provides new insights.

It is also reasonable to expect that the sender’s cost depends on the true state. For example,
it may be more costly for her to persuade the receiver to take action G when the state is b. Since
the sender does not know the state and thus her true cost, she can only use her expected cost in
decision-making. The problem becomes intractble. However, as we can see in the next section, the

underlying mechanisms will not be qualitatively aﬁectedﬁ

B An alternative tractable way of incorporating the state-dependent cost into our model is to allow for product



Receiver’s Information Acquisition

We consider the receiver’s search cost but not his attention cost, commonly modeled in the
rational inattention literature. Let’s first distinguish the search cost and the attention cost. The
receiver incurs search costs to observe the realization of the signal while incurs attention costs to
process/interpret the signal. The receiver needs first to observe the signal to process it. So, search
cost is the prerequisite of attention cost. In the standard consumer search literature, people only
model search costs. Adding another layer of receiver attention costs will make the model intractable
and distort us from the sender’s information design problem. However, it can be interesting in
settings where the receiver needs to incur a lot of effort to process the signal.

Suppose we add attention cost to our model. Since the receiver has to incur an additional cost
to process the signal, the sender must give him more benefit from searching. Otherwise, the receiver
will not search. So, the sender’s persuasion cost will increase, and the information distortion will

decrease. The sender will also have less incentive to smooth information over two periods.

The Commitment Assumption

It is important in Bayesian persuasion problems that the sender can commit to any information
structure she designs. So, the sender and the receiver update their belief in the same way after the
sender commits to an information structure. This standard assumption in the Bayesian Persuasion
literature is less restrictive than it may seem, as discussed in detail in the Section I. C of Kamenica
and Gentzkow (2011).

Symmetric Information is a natural setting that can give the sender commitment power. It
can be the case when the quality of a fashion product is well-established, but both the seller and
the consumer are uncertain about product match. Nevertheless, symmetric information is not a
requirement. The sender can have private information and does not need to report everything she
knows. What is necessary is that she cannot change the signal realization after observing it. In
general, commitment can be mandated by legal reasons (e.g., many laws about the advertising
content, clinical trials need to be pre-registered) or achieved through reputation (e.g., consumers
can observe the frequency of positive signals through repeated interaction with the firm).

There are multiple ways the sender can pre-communicate the information environment to the
receiver. She can communicate it though the peripheral route via some cuesﬁ The receiver may

also know the information environment through word of mouth or past experiences.

return if we interpret our model as consumer search before product sales. The buyer can return the product after
purchasing it and realize it is a bad match. The seller will incur a re-stocking cost upon return. So, her cost of
persuading the buyer to buy a bad product is higher than her cost of persuading the buyer to buy a good product.
When it is costless to return the product, the buyer will always buy without searching and return the product if it
turns out to be a bad match. However, even though the buyer can get a full refund from many marketplaces such as
Amazon, he needs to incur time and effort to bring the package to the store or a shipping carrier. The qualitative
properties of the main model still hold as long as a proportion of the buyers have enough return costs.

B For details, please see the survey about the elaboration likelihood model by Petty and Brifiol (2011). We thank
one of the anonymous reviewers for suggesting this pre-communication mechanism.



2.2 Applications

We can apply our model to many settings where a sender wishes to persuade a receiver to take a
particular action while the receiver wishes to match the action with the state and can strategically

gather more information before making the decision. We discuss three applications of the model.

Value-added Branding in Luxury Goods

A luxury goods company wants to add value to its branding. In each period, the seller (sender)
can spend money on building the luxury image of her brand. An example of the spending is
advertising, which has increasing marginal costs. The consumer’s cost of receiving signals is c.
It may be more costly for the seller to reach richer and busier customers. Our model allows for
any correlation between the sender’s and receiver’s costs[] The prior comes from country-of-origin
effects: a new brand of Swiss watches has a high prior compared to a new brand of Polish watches,
and vice versa for vodka.

Our model predicts that Polish watchmakers and Swiss vodka distillers only have one shot at
persuading the consumer (receiver) to buy, while Polish vodka distillers and Swiss watchmakers get

a second chance.

Lobbying

Companies (sender) have a strong incentive to influence a regulator’s (receiver) policymaking.
The regulator is deciding between policies A and B, which can be a high or low standard on
car/food safety, a strict or relaxed policy on privacy, etc. The company wants to persuade the
regulator to choose policy A. It can show some information to the regulator. The information can
be anything that may affect the regulator’s decision-making and does not need to be about the
company’s own product. The regulator’s prior belief comes from any information from a different
source. A is the likelihood that the regulator likes more about policy A after the company lobbies.
The company’s cost is the effort it incurs to persuade the regulator. Raising the effort level has an
increasing marginal cost. The regulator’s cost ¢ is the opportunity cost. If many other companies
have valuable information to present, the regulator will have a higher search cost.

Our model predicts that the company has two chances to convince the regulator to “follow
his heart” if the regulator leans toward policy A ex-ante. In contrast, it only has one shot if the
regulator leans toward the opposite policy, policy B, ex-ante. The regulator will not listen to the

company again if the information in the first period makes him like policy A even less.

Online Advertising

Consumers (the receiver) frequently search online to learn more about the product before making

a purchasing decision. The advertiser (sender) can target a consumer (showing one ad) or retarget

@We thank the AE for suggesting this example.



him (showing multiple ads to the same consumer). In each period, the advertiser can bid for the
advertising spot and persuade the consumer to purchase the product. She directly controls how
precise the advertising content is but can only affect the winning probability indirectly through
the bidding amount. In a symmetric N-bidder first-price auction with i.i.d. uniform distribution
of the valuation, the bidding amount is convex in the winning probability. The overall likelihood
that the consumer receives a positive signal, A, equals the probability that the advertiser reaches
him (winning probability) multiplied by the probability that he likes the advertising content, and is
thus proportional to the winning probability. So, the advertiser’s cost is also convex in the amount
of persuasion. The consumer’s cost c¢ is their time. The prior belief can come from word of mouth
or past experience.

Our model can explain why advertisers most frequently retarget consumers who have added the
product to the shopping cart/list. Those consumers, on average, have a high prior belief about the

product. Our model predicts that advertisers will persuade these consumers in multiple periods.

2.3 Strategies and Equilibrium Concepts

Since the belief is common knowledge and there is no private information, we consider the
sender-preferred subgame perfect equilibrium, as in Kamenica and Gentzkow (2011). If multiple
actions (B, G, and S) give the receiver the same expected payoff, we assume that the receiver
chooses an action that maximizes the sender’s expected payoff. We also assume that the sender
prefers to give the receiver more surplus in the first period if more than one equilibrium lead to the

same expected sender’s payoff. A perturbation of very little discounting justifies this assumption.

2.3.1 Equilibrium in the Second Period

The receiver has to make a decision between G and B at the end of the second period. Since it
is costly for the sender to provide information, the sender will either give no information or provide
information such that the receiver searches and takes action G if a positive signal arrives. We
illustrate the belief evolution in the second period in Figure 2l Also, the distribution of the belief
induced by the signal should be a mean-preserving spread of the initial belief: E[Au] = 0. In sum,
the sender either does not provide information and obtains zero payoffs or takes into account the
following constraints when designing the information structure:

(1) participation constraint:
A[nvg + (1= f)op] = A(pa +we) = ¢ (IRy)

Notice that the receiver will take action B if the signal realization is negative because his belief
decreases. If he takes action G after either a positive or a negative signal, there is no benefit from

searching in the second period and he will not search.

10



(2) feasibility constraint:
Afin + (1= Ay, = m (F1)

If the sender provides information, the constrained program of the sender is:
max —K (A1) + pA1 (P1)

A1,401

s.t. ([R1)), (F1), M € [0,1], 1, € [0, 1)

Belief jumps

to u,

Positive signal Receiver takes action G

w.p. A4

Initial belief
1

Negative signal

wp. 1-214 Belief drops

to iy
Receiver takes action B

Figure 2: Belief Evolution in the Second Period

We analyze the solution to this problem in section 4. Though the information structure consists
of (A1, f11, Hl)’ any two of them fully characterize the strategy because the third variable is then
uniquely determined by (F}). Therefore, we use (A1, f11), the probability of a positive signal and

the belief after observing a positive signal, to represent the sender’s strategy.

2.3.2 Equilibrium for the Entire Game

The sender cannot control the receiver’s action directly, as the receiver searches for information
and makes the decision voluntarily. However, by designing different information, the sender can
rationally anticipate the receiver’s action. In other words, the information structure designed by
the sender induces different receiver behaviors.

The sender has three options. Firstly, she can provide no information and obtain zero payoffs.

Secondly, the sender can provide information in only one period. If the receiver decides to search,
he will take action G if a positive signal arrives and taks action B if a negative signal comes. We
call this type of signal a one-shot signal because a single positive signal raises the receiver’s belief
high enough and suffices to convince the receiver. The sender will not provide extra information
regardless of the signal realization. Her problem is exactly if we ignore the time subscript. In
the base model without discounting, it does not matter whether the sender provides information in
the first or the second period. We assume that the sender provides information in the first period

in this case for notational simplicity.
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Lastly, the sender can provide information in both periodsﬁ There are two classes of signals
for the sender to choose from. By providing relatively precise information in both periods, the
sender induces the receiver to take action G immediately after observing a positive signal. We
call this type of signal a pair of one-shot signals because a single positive signal in either period
raises the receiver’s belief high enough and suffices to convince the receiver to take action G. If
a negative signal arrives in the first period, the sender will provide another signal, hoping that a
positive signal will arrive in the second period. Figure [3|illustrates the belief evolution processes if
the sender provides a one-shot signal or a pair of one-shot signals. The receiver’s belief increases

after observing a positive signal and decreases after observing a negative signal.

First period Second period First period Second period

'
. ]
Receiver takes 1 Receiver takes
'
|

. Receiver takes
action G

action G action G

Positive signal Positive signal

No or

information Initial belief
Ho

Initial belief
Ho

Positive signal

Negative signal
Negative signal

P
' Receiver keeps 1
. \ .
Receiver takes 1 searching
i

Negative signal
action B

Receiver takes
action B

Figure 3: Belief Evolution under a One-shot Signal (Left) or a Pair of One-shot Signals (Right)
Left Figure: Sender Only Persuades in One Period; Right Figure: Sender Persuades in Both Periods

By providing less precise information in both periods, the sender induces the receiver to take
action G only after searching for information in both periods. Even if the receiver receives a positive
signal in the first period, his will still have enough uncertainty and voluntarily search again to learn
more about the state. We call this type of signal a pair of iterative signals because the sender can
only convince the receiver to take action G after the receiver searches for information and updates
his belief iteratively in both periods. By providing a pair of iterative signals, the sender encourages
the receiver to search more. Figure []illustrates the belief evolution processes if the sender provides
a pair of iterative signals. If the sender designs information such that the negative signal is really
bad and reduces the receiver’s belief by a lot, the receiver will keep searching only after observing a
positive signal in the first period. If instead, the sender designs information such that the negative
signal reduces the receiver’s belief by a little, the receiver will keep searching regardless of the signal
realization in the first period.

Compared to one-shot signals, iterative signals require a longer search time. To compensate the

EBy providing information in both periods, we mean that the sender will provide information in the second period
under some circumstances. If the receiver makes a decision in the first period, the sender clearly will not provide
information in the second period.
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Figure 4: Belief Evolution under Iterative Signals
Left Figure: Receiver Keeps Searching Only after a Positive Signal; Right Figure: Receiver Searches in Both
Periods

receiver for the higher expected search costs, the sender needs to give the receiver a higher benefit
from searching to persuade him to search, which hurts the sender’s payoff. The following result
shows that the sender always prefers a one-shot signal to a pair of iterative signals in equilibrium.

So, we limit our attention to the optimal one-shot signals in all subsequent analyses.

Proposition 1. For any pair of feasible iterative signals, there exists a one-shot signal that gives

the sender a strictly higher payoff.
Outline of the proof.

1. Characterize the optimal one-period strategy.

o Transform the sender’s problem with multiple non-linear constraints into an equivalent

problem with one constrained variable (\).

Method: Derive a lower and upper bound for Ay using the participation constraint and the
feasibility constraint. For any Ag, find a feasible information structure that safisfies the

constraints of the original problem.

o Solve the transformed program using standard techniques.

2. For any feasible iterative signals, find a feasible one-period signal that gives the sender a

strictly higher payoff.
O

This proposition greatly simplifies the analyses by reducing the signal spaces that may be
optimal and allows us to formulate the sender’s problem in a unified way. The intuition of this
proposition is that if the receiver is not certain enough to take action G after seeing a positive

signal in the first period, it is better for the sender to change to another signal structure where

13



the receiver would take action G right after seeing the positive signal. That is, the game tree of
Figure 4| is dominated by the game tree on the left of Figure The sender takes into account the
following constraints when designing the optimal one-shot signal of the first period:

(1) participation constraint:

Xolrovg + (1 — fig)vs] + (1 — Ag)E[receiver surplus at t = 1|search at ¢ = 1]
=Xo (10 +vp) + (1 — Ao)[M (i1 +vp) — ] > ¢ (1 Ro)

(2) feasibility constraint:
Aoflo + (1 = Xo)p, = po (Fo)

If the sender provides information in both periods, her problem ism

max —K()\g) + pAo + (1 — )\0) [—K()\l) + p)\l] (PQ)
0,110,141 ,A1,441

st. (TR, (Fy), (M1, fin) solves

The constraint that (A1, f11) solves implies that (A1, fi1) needs to satisfy the participation
constraint, , and feasibility constraint, , of . We use (Ao, fi0, ft1, A1, 1), the probability
of a positive signal in each period, the belief after observing a positive signal in each period, and the
initial belief in the second period, to represent the sender’s strategy. We discuss some benchmark

problems in the next section, and then analyze the solution to our problem in section 4.

3 Some Benchmarks

Before solving our model in the next section, we will work out several benchmarks to illustrate

the added value of our model.

3.1 Standard Single-period Bayesian Persuasion Model

The first benchmark is the standard single-period Bayesian persuasion model in which there is
no cost of providing or searching for information, and the receiver is forced to search. The sender
does not need to consider the receiver’s participation constraint. The sender can choose any signal
to persuade the receiver to take action GG, as long as the posterior belief is a mean-preserving spread

of the prior belief (satisfies the feasibility constraint).

B'We thank one of the anonymous reviewers for suggesting this intuition.

M T, simplify the notation, we omit the following common constraints in the main text in all of the programs:
fr € [—up, 1], e € [0, pt), Ae € [0, 1]7H0 = p1. The first constraint is required by one-shot signals. The second and
third constraints ensure the information structure is well-defined. The last equality comes from the fact that the
belief at the beginning of the second period, p1, is the belief after observing a negative signal in the first period, Ky
under one-shot signals.
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Standard Concavification Method

The above information design problem can be solved by the concavification method introduced
by Aumann and Maschler (1995) and Kamenica and Gentzkow (2011). Figure [5| illustrates the
solution method. The orange line is the sender’s payoff without any information. Denote it by
0(p). Given the belief 41, the receiver’s payoff from taking action G is pvg + (1 — p)vp while his
payoff from taking action B is 0. The receiver will take action G if and only if the belief is high
enough, pvg+(1—p)vy > 0 < p > —wp. So, the sender’s payoff is 0 (p) if the belief is lower (higher)
than —wvp. The sender will not benefit from providing partial information if the belief is higher than
—up. In contrast, she can be better off providing information if the belief is lower. For example,
by designing information such that the receiver will get a positive signal with probability f—gb and
raise his belief to —vp, and a negative signal with probability 1 — —%) and lower his belief to 0, the
sender can obtain a payoff of f—gbp + (1 - f—gb) -0 = f—gbp. More generally, there is a one-to-one
mapping from the posterior belief to the sender’s payoff. So, her possible payoff with information
design is the weighted sum of her payoff under different posterior beliefs, or formally, the convex
hull of the graph of 0(u), co(9(p)). The highest payoff she can obtain is thus the concave closure

of 0(p), I(p) = sup{u : (p,u) € co(v(n))} (dashed blue line).

Sender’s Payoff 4

Without
B — Information

M) f====== x4 With

Information Design

0 Ho ) Belief

Figure 5: The Sender’s Payoff under Standard Bayesian Persuasion

Why We cannot Use It When the Receiver Searches Voluntarily

We cannot apply the above concavification method when the receiver searches voluntarily be-
cause the sender’s payoff with information design is no longer a weighted sum of her payoff under
different posterior beliefs. It also depends on whether the receiver searches for information. The
sender never provides information and the receiver never searches if the search cost or the infor-
mation provision cost is too high. Other than this trivial case, even for the single-period game,
there does not exist any function () such that the sender’s expected payoff under information
(A flo, ) always equal to AD(fig) + (1 — A)d(x,).

The intuition is that, without receiver voluntary search, the sender’s ex-post payoff given any
realized posterior belief © depends only on u. So, her ex-ante payoff is a weighted sum of her ex-post

payoff ©(u) and we can use the concavification method to solve the problem. Even if the receiver
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can gather independent information after the signal realization (Matyskova and Montes 2023, where
the receiver always processes the sender’s signal and thus always searches by our definition) or it
is costly for the sender to provide information (Gentzkow and Kamenica 2014), one can derive
an adjusted function 9°% (1) so that the sender’s ex-ante payoff is a weighted sum of 9% (p). In
contrast, when the receiver searches voluntarily, the sender’s ex-post payoff given any realized
posterior belief u depends on the entire information structure. For example, suppose the receiver
is indifferent between searching or not under an information structure. Fixing g, if we increase p
by a little and therefore reduce the likelihood of a positive signal by a little, the receiver will switch
from searching to not searching. As a result, the sender’s payoff decreases discontinuously. So, we
cannot construct a function o(-) such that the sender’s ex-ante payoff is a weighted sum of o(u) for
any information structure. Consequently, we cannot use the concavification method.

Consumer voluntary search is ubiquitous in marketing, as firms usually can only attract rather
than force consumers to visit their website, click on their ad, or visit their store. Moreover, it can
change the optimal strategy and payoff qualitatively. For example, the sender will always add some
noise to the positive signal in this benchmark. In contrast, she may provide a precise positive signal

(& = 1) in our model. Thus, it is important to take this feature into account.

How Our Method Solves the Problem

From the discussion in the previous subsection, the main obstacle we are dealing with is that
the sender’s ex-post payoff given any realized posterior belief p depends on the entire informa-
tion structure. This paper develops a constrained non-linear programming method to tackle it.
Our framework, and , directly incorporates the receiver’s participation decision, which is
influenced by the entire information structure.

This approch encounters two main challenges. First, the signal space is huge and different types
of signals (Figure |3|and 4) induce different receiver strategies. To alleviate the dimensionality issue,
we show that the sender always chooses one-shot signals (Proposition . We also transform the
sender’s optimization problem into three subproblems with only one constrained variable each
(Proposition [4| and . We then select the global solution from the local solutions to each of the
subproblems. It is tricky because the local solutions are not always in closed form. To compare
the local solutions, we establish single-crossing results among the local solutions and show that the
sender provides information in both periods if and only if the prior belief is higher than a threshold
(Proposition [5 and [6)).

Second, the participation and feasibility constraints consist of non-linear terms such as Af,
which is hard to handle. We simplify the non-linear constraints into a linear constraint. To do
this, we derive both lower and upper bounds for the constrained variable based on the original
constraints (Proposition and E Consequently, any information structure that satisfies the

M For example, in the one-period problem, by utilizing the fact that fio < 1 in the participation constraint, we can
obtain a lower bound of \o. By writing fip as a function of Ao and My using the feasibility constraint, we can replace
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original constraints must satisfy this linear constraint. For any value of the constrained variable that

satisfies the linear constraint, we then construct a information structure that safisfies the original

constraints. It implies that the simpler linear constraint is equivalent to the original constraints.
For more details, please refer to the proof outlines below Proposition [6] and the formal

proofs in the appendix .

3.2 Constant Information Provision Costs

In the second benchmark, we consider the same model as ours, except that the sender’s infor-
mation provision cost does not depend on the specific information structure. If the sender provides
information, she incurs a constant cost of k in that period. The following result characterizes the
optimal information structure, showing that the sender will never smooth information over two

periods.

Proposition 2. The sender does not provide information if the prior is low, po < max{c/vg,c
uk/p}, and provides information in one period if pg > max{c/vg,c — vpk/p}. In the latter case,

the optz'mal probability of a positive signal and the optimal belief after observing a positive signal,
(NE, it is (Ho=C —tuloy,

-y’ po—c

This proposition shows that the convex information provision cost gives the sender an incentive
to spread information over multiple periods. Intuitively, the sender can save some information
provision costs by smoothing the information over two periods if the cost is convex. If the cost is
constant instead, the sender can always combine the signals in both periods into a single signal
and only incurs the information provision cost once. That way, she will be strictly better off. It
does not mean that the information provision cost is always convex. A different cost function may
be another reason the sender sometimes only communicates with the receiver once. However, it
implies that the convexity of the information provision cost plays a critical role when the sender

persuades the receiver gradually@

3.3 Alternative Non-Bayesian Persuasion Model

Bayesian Persuasion models allow the sender to choose flexibly from a large signal space. An
alternative communication model is information disclosure, where the sender can only disclose
information completely or nothing. Figure [f]illustrates its optimal solution. Again, the orange line
is the sender’s payoff without any information. The receiver will take action G if and only if the
belief is high enough. The sender will not benefit from providing information if the belief is higher
than —wvp. In contrast, she can be better off providing information if the belief is lower. Because the
sender can not provide partial information, the receiver will know the exact state after disclosure.

With probability pug, the receiver knows that the state is g and takes action G; with probability

o in the participation constraint. By utilizing the fact that K, > 0, we can obtain an upper bound of Ag.
IAWe thank one of the anonymous reviewers for suggesting thls benchmark.
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1 — wo, he knows that the state is b and takes action B. The sender’s payoff is thus pg - p with
disclosure. The green line illustrates the sender’s payoff with optimal disclosure.

Comparing Figure [p] with Figure [6] one can see that the ability to design flexible information
is valuable to the sender. Disclosure is, in general, sub-optimal for her if she has access to a larger
signal space. In the real world, firms often have at least some freedom in choosing how much
and what kinds of information to provide to consumers. This benchmark highlights the value of a

Bayesian persuasion model, which can offer us more insights into the information design problem.

Sender’s Payoff Without

Information

[
[ e With

: Disclosure

: (complete information)
|

-
MG) |- === - - 9~

0 Ho —Vp Belief

Figure 6: The Sender’s Payoff under Information Disclosure

3.4 Dynamic Commitment

Under many circumstances, the assumption that the sender can generate credible signals within
each period but does not have dynamic commitment power is reasonable. It is hard for the sender
to commit to the entire information structure across all periods and convince the receiver that she
will stick to it when deviating to a different information structure during intermediate periods is
profitable. However, factors such as reputation can give the sender stronger commitment power.
Here, we study the implications of dynamic commitment power. The sender chooses and commits

to the entire information structure to maximize the expected surplus.

max  —K(\g) + pro+ (1 — o) [~K (A1) + pi] (Pac)

050,415,215 21

s.t. ([Rd), (FQ), (TR, ()

Compared to , the sender faces one fewer constraint if she has dynamic commitment power:
the second-period information does not need to maximize the sender’s second-period payoff. Con-
sequently, the sender can access a larger signal space and will always be (weakly) better off. Since
dynamic commitment does not matter if the sender only provides information once, we look at the

case in which the sender provides information in both periods.

Proposition 3. Suppose the search cost is high, v A\}* < ¢ < ¢, and po > c¢(2vy — ¢)/(vg)?. The
sender provides information in both periods regardless of the dynamic commitment power. If the

sender has dynamic commitment power, her payoff is strictly higher, and the receiver gets a strictly
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positive surplus in the second period. The benefit of dynamic commitment power for the sender

vanishes as the search cost approaches zero.

When the search cost is high, we will show in Proposition [6] that the sender perfectly smooths
the information (the same A and g in each period) if she does not have dynamic commitment
power. If she instead has dynamic commitment power, she will commit to giving the receiver a
higher benefit from searching in the second period. As a result, the receiver will search even if
the amount of persuasion is lower in the first period. Though it hurts the sender’s payoff in the
second period, it increases her payoff in the first period by reducing the information provision cost.
The overall effect is strictly positive. So, the optimal information provision will not be perfectly
smooth. The above finding relates to the durable good pricing results (e.g., Coase 1972), though
the underlying mechanisms differ. Without dynamic commitment power, the monopolist tends to
reduce the price as time passes, which reduces profit because a rational receiver will strategically
wait. Here, the ability to commit to more favorable (higher expected surplus) information in the
future benefits the sender.

In contrast, when the search cost approaches zero, the difference between the sender surplus
with and without dynamic commitment power approaches zero. Intuitively, the sender can commit
to giving the receiver a higher benefit from searching in the second period if she has dynamic power.
It benefits her by relaxing the receiver’s participation constraint in the first period. However, the
participation constraint is already very loose when the search cost is low. Thus, the benefit of
dynamic commitment power approaches zero.

The sender needs to have more strategic considerations if she does not have dynamic com-
mitment power. This benchmark shows that this additional strategic consideration is vital in the

presence of non-trivial friction (search cost).

4 Optimal Strategies

From the discussion in Section[2.3.1] the receiver will search (take action S) whenever the sender
provides information. Otherwise, the sender can save the information provision cost and be better
off by not providing any information. The receiver will take action G immediately upon receiving
a positive signal and action B if the sender does not provide information. Therefore, we only need

to characterize the sender’s strategy, which implies the receiver’s strategy.

4.1 A Relaxed Problem

We first consider a relaxed problem of the original problem. In the relaxed problem (|7,|), The
sender maximizes the objective function of the original problem without taking into account the

participation constraints and the feasibility constraints. We will use the solution to the relaxed
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problem throughout the subsequent analyses.

max —K (Ao) +pAo + (1 = Ao) [ K (A1) + pAi] (Pr)
0,71

Lemma 1. The solution to the relaxed problem , (MG, A1), does not depend on the search cost
c and \y" < A1*. The sender’s payoff in the relaxed problem is strictly positive.

The above payoff is the highest possible payoff the sender can obtain in equilibrium. When the
prior belief is high enough, the sender obtains that payoff by setting the probability of a positive
signal to A\;*. Since the sender can smooth the information provision at the beginning of the first
period while only has one chance of providing information in the second period, she will choose
AoF < AT*. When the prior is lower and a positive signal occurs with probability A\j* and A7* in each
period, the sender needs to provide a very noisy signal (low fi;) due to feasibility constraints. As
a result, the receiver will be quite uncertain about the state even after observing a positive signal.
So, he will choose not to search for information. This friction restricts the communication between
the players and distorts the optimal strategy away from the strategy of the relaxed problem. For
the problem to be non-degenerate, we concentrate on the case in which the prior is not too high
throughout the paper. As a result, the optimal strategy is different from from the strategy of the

relaxed problem.

4.2 Optimal Strategy in the Second Period

When the belief at the beginning of the second period is too low, the receiver will not search,
given any feasible signals. Thus, the sender does not provide information to minimize the cost.
When the belief at the beginning of the second period is higher, and the search cost is not too
high, the sender provides information and obtains a positive payoff. The following proposition

summarizes the optimal information structure.

Proposition 4. In the second period, the sender does not provide information when p1 < po1 =
c/vg. When p1 > po, the optimal probability of a positive signal and the optimal belief after

observing a positive signal, (A}, i}), depend on the search cost c:

1. If ¢ > vgAT*, there exists a unique ¢ € (vgAT*,vgp1] such that the sender does not provide

information if ¢ > ¢ and (A}, if) = (¢/vg, 1) if ¢ < €. The receiver gets zero surplus.

2. If ¢ € [ + v AT™, vgATY), (AT, 17) = (B35, %) The receiver gets zero surplus.

3. If ¢ < min{puy +vpAi*, v AT}, (], 11) = (AT, min{)‘f—%, 1}). The receiver gets positive surplus.
When the search cost is too high, the sender has to incur a very high cost to persuade the
receiver to search. Even if it is feasible for the sender to induce the receiver to search, it is so costly

that the sender’s expected payoff is negative. So, the sender chooses not to provide information,

and the receiver does not search.
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When the search cost is high but not too high, the sender will provide just enough information
such that the receiver searches. Since the sender needs to give the receiver a high benefit from
searching to persuade him to search, in equilibrium, the receiver becomes certain (g7 = 1) that the
state is g after observing a positive signal. Suppose, instead, a positive signal does not fully reveal
the state (17 < 1). In that case, the probability of a positive signal will need to be higher for the
sender to persuade the receiver to search. Since the marginal cost of increasing the probability of
a positive signal exceeds the marginal benefit, the sender’s payoff decreases. The sender trades off
the frequency of a positive signal for precision.

When the search cost is medium, the receiver’s participation constraint is easier to satisfy. Since
the marginal benefit of increasing the probability of a positive signal exceeds the marginal cost, in
equilibrium, the sender trades off the precision of a positive signal for frequency. The receiver is
still uncertain about the state after observing a positive signal, but the belief is high enough that
the receiver searches.

When the search cost is low, the information friction does not distort the information structure
from the solution to the relaxed problem, and the receiver gets a strictly positive surplus.

Figure [7] and Figure [§] illustrate the optimal strategy and receiver surplus as a function of the
search cost. For low search cost in both figures, the sender can achieve the solution to the relaxed
problem and obtain the highest possible payoff because the communication friction is low. As the
search cost increases, the sender needs to give the receiver a higher benefit from searching to satisfy
his participation constraint. In Figure [7| the sender cannot increase A; or j1; without lowering the
other one due to the low initial belief pq (H1 is already 0 and cannot be further reduced, so A - f is
fixed). When she switches from the low search cost region to the medium search cost region, she
reduces the likelihood of a positive signal and increases its precision. It shows that the receiver
surplus is higher when the positive signal is more precise but less likely, fixing A - g. In Figure
the sender can increase A\; without lowering j1; due to the high initial belief (H1 is positive,
so she can increase A - i by reducing Hl). When she switches from the low search cost region to
the high search cost region, she increases the likelihood of a positive signal to satisfy the receiver’s

participation constraintﬂ

4.3 Optimal Strategy for the Entire Game

When the prior is too low, any feasible signal the sender can generate is not attractive enough for
the receiver to search. Thus, it is impossible to communicate between the sender and the receiver.
When the prior is higher, and the search cost is not too high, the sender provides information and

obtains a positive payoff.

Proposition 5. Suppose the search cost is not too high, ¢ < ¢. There exists y1.2 > c(2v, — )/ (vy)?

such that the sender does not provide information if the prior is low, po < jto,1, provides information

T Note that the medium search cost region is empty given the parameter values in this figure.
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in one period if o € [po,1, p1,2), and provides information in both periods if pio > p11,2. Suppose the
sender provides information in both periods. A positive signal fully reveals the state being g when
the search cost is high and partially reveals the state when the search cost is low. The receiver gets

zero total surplus.

As we discussed in the previous section, the widely-used concavification approach cannot be used
to solve this kind of games because the receiver’s participation is strategic. We instead develop a

constrained non-linear programming method to solve the sender’s information design problem.

Outline of the proof.
L. ygAj* <c<e
(a) Characterize the optimal two-period strategy.
o Using Proposition [4] to simplify the sender’s program.

o Transform the sender’s problem with multiple non-linear constraints into an equivalent

problem with one constrained variable ().

o Solve the transformed program using standard techniques.

22



(b) Compare the sender’s payoff from the optimal one-period and two-period strategies.

Show that the sender always provides information in both periods whenever feasible.
2. ¢ < vgAT*

(a) Characterize the optimal two-period strategy
o Transform the sender’s problem with multiple constrained variables into two con-
strained problems.
We need two new programs because the receiver’s incentive in the first period depends
on his expectation about the second period. Denote the sender’s strategy as the Sy (Sp)
strategy and her program as ((P2s,)) if the sender gives the receiver a strictly

positive surplus (zero surplus) in the second period.

o Obtain the solution to each problem

i. o Transform into an equivalent problem with one constrained variable ().
o Solve the transformed program using standard techniques.

ii. o Transform into an equivalent problem with one constrained variable (u1).
We cannot use a similar method as before to transform it into an equivalent program
with one constrained variable, \g, because two constrained variables appear in the
objective function. Instead, we transform it into an equivalent program with a
constraint on Ag and a constraint on p;. We then replacing Ag by its upper bound
by showing that \g is binding.

o Solve the transformed program using standard techniques.

(b) Compare the sender’s payoff from the optimal one-period and two-period strategies.

o Show that the sender prefers giving the receiver a positive surplus in the second period
to perusading in only one period. Therefore, she always provides information in both
periods if the S, strategy is feasible. We are left to determine whether she prefers giving
the receiver zero surplus in the second period or perusading in only one period.

o Prove a single-crossing result: show that the sender’s payoff from the optimal Sy
strategy increases in the prior at a higher rate than her payoff from the optimal one-
period strategy. Therefore, if the sender prefers giving the receiver zero surplus in the
second period to perusading in only one period at a given prior, then she has the same
preference at any higher prior.

o The above two results imply that the sender will always provide information in both

periods if and only if the prior is higher than a threshold.
O

The convex information provision cost gives the sender an incentive to smooth the information

provision over two periods. Intuitively, when the prior is low, the receiver becomes even more
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pessimistic about the state being ¢ if he is not convinced in the first period. Given his strong belief
that the state is b, he will take action B immediately. It is thus not feasible for the sender to
persuade in both periods. As the prior increases, it becomes feasible for the sender to smooth the
information provision. If the sender finds it optimal to provide information in both periods at a
given prior, she also prefers to smooth the information for any higher prior.

The intuition for the precision of the signal is the following. The receiver obtains the highest
possible surplus conditional on observing a positive signal and taking action G. When it is highly
costly for the receiver to search, the optimal information structure fully convinces the receiver that
the state is ¢ when a positive signal arrives. Without providing this type of information, the sender
cannot persuade the receiver to search. In contrast, when it is less costly for the receiver to search,
the optimal information structure adds some noise to a positive signal. In equilibrium, the receiver
is not sure that the state is g after observing a positive signal. The state may be b after the receiver
takes action G. However, the likelihood of state g after a positive signal is high enough to persuade
the receiver to search. By adding some noise to a positive signal, the sender can generate more
frequent positive signals and increase her payoff without violating the feasibility constraint.

When the sender provides information in both periods, she can always extract surplus from the
receiver if the receiver gets a strictly positive surplus. If the likelihood of a positive signal is lower
than its unconstrained optimum, the sender can increase her payoff by increasing the probability
of a positive signal and decreasing the belief after observing a positive signal. If the likelihood
of a positive signal is higher than its unconstrained optimum, the sender can increase the payoff
by reducing the probability of a positive signal and increasing the belief after observing a positive

signal. This implies that the receiver gets zero surplus in equilibrium.

4.4 Comparative Statics

When the sender provides information in only one period, the optimal strategy has a closed-
form solution and is easy to analyze. Here, we discuss the comparative statics when the sender

provides information in both periods.

4.4.1 Comparative Statics With Regard to the Prior Belief

When the search cost is high, the prior determines whether the sender smooths information but
does not affect the information structure, conditional on the sender providing information. When
the search cost is low, the prior affects the information structure monotonically. When the search
cost is intermediate, the sender may switch from the Sy strategy to the S, strategy as the prior
increases. There can be a discrete jump in the optimal information structure. We leave the analysis

of this case to the online appendix.

Proposition 6. Suppose the sender provides information in both periods. When the search cost

is high, vgA\7* < ¢ < €, positive signal fully reveals the state. Neither the probability of a positive
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signal, A;, nor the sender’s payoff depends on the prior, (A, ") = (c/vg,1). When the search
cost is low, ¢ < & := vy K"V [K(AT*)/A}*], the probability of a positive signal, N}, is continuous and
increases in the prior. The belief after observing a positive signal, iy, is continuous and decreases

in the prior. The sender’s payoff strictly increases in the prior.

Outline of the proof.

The proof of Proposition [5| has fully characterized the optimal strategy when the search cost is
high. To fully characterize the optimal strategy when the search cost is low, we only need to select
the global solution by comparing the local solutions to (Pas,|) and (Pg,)) when both are feasible.

1. High prior belief
o Show that the optimal S, strategy also satisfies the constraints in (Psg,)). Thus, the sender

always prefers giving the receiver zero rather than a positive surplus in the second period.

2. Low prior belief

o Show that the sender’s payoff from the optimal S strategy increases in the prior at a higher
rate than her payoff from the optimal Sy strategy. Together with the result of the high prior
belief case, it implies that the sender also always prefers giving the receiver zero rather than

a positive surplus in the second period in this case.

o Show that it is feasible to give the receiver zero surplus in the second period whenever it is
feasible to give the receiver a positive surplus in the second period. Therefore, the sender always
gives the receiver zero surplus in the second period when she provides information in both periods.

o Derive the comparative statics by first-order conditions and the implicit function theorem. [J

The optimal information is perfectly smooth (the same A and g in each period) when the
search cost is high and the sender provides information in both periods. Intuitively, since it is very
costly for the receiver to acquire information, a positive signal fully reveals the state is g to give
him enough benefit from searching. For the same reason, the minimal amount of persuasion to
persuade the receiver to search is high. The marginal cost of increasing the amount of persuasion
exceeds the marginal benefit. Even if the prior increases and it is feasible for the sender to increase
the amount of persuasion, she will prefer not to do so. Hence, conditional on the sender providing
information, the information structure does not depend on the prior. The positive signal has the
same likelihood and precision in each period. Figure [9] illustrates the sender’s optimal strategy
numerically when the search cost is highE As we can see, the optimal information structure is

perfectly smooth, and a positive signal always fully reveals the state (fig = i1 = 1).

™ The choice of the specific parameter values does not affect the qualitative property of the optimal strategy (i.e.,
the shape of the figure). What matters is the relative value. The search cost is low if ¢ < vgA¢", intermediate if
VgAs" < € < vgAT", and high if v A" <c<C.
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Figure 9: The sender’s optimal strategy and payoff when ¢ = 0.1,p = 0.8,v4 = 0.2,v, =
—0.8, K(\) = 125

When the search cost is low, and the sender provides information in both periods, she chooses
between S and Sy strategies. Under the Sy strategy, the receiver observes less frequent positive
signals in the first period and more frequent positive signals in the second period. On average,
he spends a longer time searching. Consequently, the sender has to give the receiver a higher
benefit from searching to compensate for the higher expected total search cost, which reduces the
sender’s surplus. Therefore, the sender always chooses the Sy strategy in equilibrium, and the
optimal strategy is continuous in the prior. The likelihood of a positive signal is lower than its
unconstrained optimum in both periods. More frequent positive signals are feasible when the prior
is higher. Even if the receiver becomes less sure about the state being good after observing a
positive signal, he will still search as long as the likelihood of receiving a positive signal and earning
a strictly positive surplus increases. In equilibrium, the sender trades off the precision of a positive
signal for frequency as the prior increases. The consumer spends less time searching for information
because he is more likely to receive a positive signal and make a decision in the first period.

Figure illustrates the sender’s optimal strategy numerically when the search cost is IOWE
We present the optimal strategy and the sender’s payoffs from the optimal one-period, Sg, and S+
strategies. The sender always prefers the Sy strategy when she provides information in both periods.
As illustrated, the probabilities of a positive signal at both periods, A\j and A}, are continuous and
increase in p9. The beliefs after observing a positive signal in each period, i and fi], are continuous
and decrease in pug. The positive signal has different likelihood and precision in each period. When
the prior is lower than the intercept of the brown line, the sender prefers providing information in

only one period to providing information in both periods.

M The domain of the prior is [¢(2v, — ¢)/(vy)?, min{fio, p}]. When po < ¢(2vy — ¢)/(vg)?, the sender provides
information in at most one period. When po > fio := 2¢ — vpA7" — [c + (1 — AT")wp] 5", the sender achieves the
solution to the relaxed problem.
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4.4.2 Comparative Statics With Regard to the Sender’s Costs

Providing the same amount of persuasion may impose different costs on the sender. To study
the impact of the sender’s information provision costs on the optimal strategy, we rewrite the
sender’s cost function as K()\) = nK(\), where K(1/2) = 1/2 for identification. It is more costly
for the sender to provide information when 7 is larger. The following proposition summarizes the

comparative statics of the optimal strategy about 7.

Proposition 7. Suppose the sender provides information in both periods. Her payoff strictly de-
creases in the relative cost of information provision, n. When the search cost is low, ¢ < ¢, the
amount of persuasion decreases in the first period and increases in the second period, asn increases.

When the search cost is high, ¢ > vgA\T*, the optimal strategy of the sender does not depend on 1.

When the search cost is high, it is very costly for the receiver to search. The sender needs to
incur a high cost to persuade the receiver to search. As a result, the marginal cost of increasing the
amount of persuasion exceeds the marginal benefit. So, the sender provides the minimum amount
of persuasion for the receiver to search, which does not depend on the sender’s cost. Hence, the
optimal information structure does not depend on the relative cost of information provision.

When the search cost is low, as the relative cost of information provision increases, the marginal
cost of increasing the amount of persuasion increases, while the marginal benefit remains the same.
Because the sender definitely incurs the information provision cost in the first period, she reduces
the amount of persuasion in the first period. This allows her to increase the amount of persuasion
in the second period when the information provision cost is not always incurred and the likelihood
of a positive signal is lower than its unconstrained optimum. The consumer spends more time
searching for information because he is less likely to receive a positive signal and make a decision
in the first period. Figure [L1] and [12]illustrate the sender’s optimal strategy when the search cost

is high and low, respectively.
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In the previous sections, the sender designs the information structure to maximize the expected
payoff. This section characterizes the efficient strategy when a social planner designs the information
structure to maximize total welfare. We then investigate the information distortion caused by not

taking into account receiver surplus. For tractability reasons, we use a special form of the payoff
function in this section, vy = 1 — p and v, = —p.

5.1 Efficient Strategy in the Second Period

As discussed in the previous section, the sender does not provide information if the belief at

the beginning of the second period is too low, 111 < fp,1. So, we concentrate on the case in which
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p1 > po,1- In the second period, the social planner’s problem is:

g\niz( —K(/\l) + pA1 + )\1(,51 — p) —c (El)
1,41

s.t. ,

Below, we discuss the efficient information structure in the second period intuitively. The online
appendix presents the formal characterization of the efficient strategy in the second period. When
the search cost is high, the information provider must incur a high cost to persuade the receiver
to search. The marginal cost of increasing the amount of persuasion exceeds the marginal benefit.
Therefore, both the sender and the social planner choose the minimum amount of persuasion that
can induce the receiver to search, and there is no information distortion. When the search cost is
lower, it is easier to persuade the receiver to search. The marginal costs of increasing the amount
of persuasion are the same for both the sender and the social planner, while the marginal benefit
is lower for the sender. Therefore, the amount of persuasion the sender chooses is lower than the
social planner does, except when both the search cost and the initial belief are low. In that case,
the sender chooses a higher amount of persuasion than the social planner because it is not feasible

for the latter to generate frequent positive signals.

5.2 Efficient Strategy for the Entire Game

As in the previous section, the social planner does not provide information if the prior is too
low or the search cost is too high. When she provides information in only one period, the previous
subsection characterizes the efficient strategy. When she provides information in both periods, her

problem is:

max —K()\O) + )\O,JO —c+ (1 — )\0) [—K()\l) + A = C] (EQ)
050,415 A 1,01

s.t. " 7 ()\17 ﬂl) solves

The following proposition compares the payoff-maximizing and efficient strategies when the

sender provides information in both periods.

Proposition 8. Suppose the sender provides information in both periods. When ¢ > vg\1*, the
payoff-mazximizing strategy is efficient. When ¢ < vgAl*, the sender, who maximizes her payoff,
chooses a lower amount of persuasion in the first period and a higher one in the second period than

does the social planner, who mazximizes total welfare.

There is no information distortion when the search cost is high, similar to the argument in the
previous subsection. When the search cost is lower, the sender’s information structure is no longer
efficient because she does not internalize the receiver’s welfare. Since the social planner benefits

directly from reducing the receiver’s search cost, she designs the information to speed up the search
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process. The receiver takes action G with a higher probability in the first period under the efficient

information structure.

6 Concluding Remarks

Consumers frequently search for information before making decisions. Since their search and
purchase decisions depend on the information environment, firms have a strong incentive to influence
it. This paper endogenizes consumers’ information environment from the firm’s perspective under
a general signal space. We examine the optimal information provision strategy of a sender and
the optimal information acquisition strategy of a receiver when the sender sequentially persuades a
receiver to take a particular action. The sender prefers that action regardless of the unknown state,
while the receiver only wishes to take that action if the state is good. In our model, the sender incurs
a cost to provide information, and the receiver incurs a cost to search. The receiver trades off the
cost of searching and the benefit of obtaining more accurate information to make better decisions.
The sender trades off the cost of information provision and the benefit of persuading the receiver to
search and then take the sender’s preferred action. We allow for gradual communication between
the sender and the receiver. Consequently, the sender also makes the intertemporal trade-off of
smoothing the information to reduce the persuasion cost.

In equilibrium, the sender uses one-shot signals that induce the receiver to immediately take the
sender’s preferred action upon observing a positive signal. The sender smooths information over
multiple periods if and only if there is a high prior that the state is good. The sender extracts all
the surplus from the receiver when she provides information in both periods, while she may leave
some surplus for the receiver when she provides information in only one period. When the search
cost for the receiver is high, the receiver is sure that the state is good when he takes the desired
action. When the search cost is low, the optimal information structure does not fully reveal the
state, which may be bad even though the receiver takes the desired action. We compare the payoft-
maximizing information structure with the efficient information structure and find no information
distortion when the search cost is high. There is information distortion when the search cost is
lower.

There are some limitations to the current work. The implementation of a given signal depends
on the institutional details of the specific problem. Further empirical work can complement the
current paper by putting the theoretical results into practice. In addition, it will be interesting
to study the optimal persuasion strategy when there is more than one sender. Such competition
may lead the sender to provide more information and improve equilibrium efficiency. Moreover,
the sender has complete control of the information structure in this paper. It will be interesting to

consider the case where the sender can only partially control the information environment.
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Appendix

Proof of Proposition [l We first characterize the optimal one-period strategy (providing an one-
shot signal) of the sender. Analagous to section the sender’s problem is:

max —K (o) + pAo (Fo)
0510
s.t. No(po +wp) > ¢ (IR))

7)\0 € [07 1]7&@ € [Ovuo)

We transform (Fp|) into an equivalent program that is easier to analyze.

Lemma 2. If 1o < c/vg, the sender does not provide information in the second period. If 19 > c/vg,
(P is equivalent to:

IT; (p0) :=max —K(Ag) + pAo (Py)
St Ao € [C,“OC]
vy —Up

Proof of Lemma[3 We first show that any (Ao, po) satisfying the constraints in also satisfy
the constraints in (F): (IR)) = Xo > —— > . (IR})) & (Fy) = Ao < =

Ho+vy, — wg' - TU—H, T W

Thus, Ay € [i, ”f—v_bc} It is feasible for the sender to provide information in the second period

iff [L uo—C} is non-empty: i < “fo—;bc S g > i So, If g < =, the sender will not provide

vg ' —Up 9’

information in the second period.

We then show that for any (Ao, po) satisfying the constraints in and pug > =, we can

Vg

find fio, pt, such that (Mo, 10, 110, Ho) satisfies the constraints in (Fp|). The conclusion then follows.
Suppose (Ao, f10) satisfies the constraints in : Ao € [ g “O_C} s o > i Consider ig = )\—'30 —

E’ —Up

and p, = %&?’)‘0 One can verify that (Ao, uo, fo, f1,)) satisfies (IR;) & (Fp). So, we just need

toshowthat—vbg,u_oglandBOZO. ,u_oz)\io—va—vb. )\OZiim):)\—%—vbgl.

—c —ct+vp A
Ao < BEE = pg > e — o = py = HOEC > 0. O

Now consider the transformed program when pg > <

_’Ug'

L If ¢ > vgAT* (ie. AT® < i) and the sender provides information, then \j = i due to

< #0”9*‘3) is
Vg’ ) wg—c

strict concavity of the objective function. One can show that (Ao, fo, 1) = (
the only feasible information structure that satisfies (/R{)) and (Fp). Thus, the sender will
provide information with (A, /Iﬂvﬁo) = (i, 1, %) iff the sender surplus, —K(i) +p- i,
is positive (when it is 0, the sender is indifferent between providing information or not). Let
fe) = —K(%) +p- % We have f(0) = 0, f is strictly concave and obtains the maximum at
¢ = vgA\T* < ¢ < 1. In addition, f(vg) < 0 because ;\Hnl K'(\) = 400. Therefore, there exists
_>
L >0,if0<c<cC ]
a unique ¢ € (vgAT*,vg) s.t. f(c) . Moreover, when the sender provides
<0,ifec>¢
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information, pg > é = ¢ < pvg. So, the sender does not provide information if ¢ > ¢ and

provides information with (A§, a5) = ( i, 1) if ¢ < ¢. The receiver surplus is 0.

2. If ¢ € [po + vpAT*, vgA\T*) (ie. A\j* > EC > <) and the sender provides information, then

Vp Vg

Ao = “f—;; due to strict concavity of the objective function. One can show that (A, fio, Ho) =

(Ho=t ZEO0% () is the only feasible information structure that satisfies (I R{)) and (Fp). Thus,

—vp 7 po—c’
the sender will provide information with (o, fo, p1,)) = ( ’io—;bc, %, 0) iff the sender surplus,
—K(“_O—;bc) +p- “fv_bc, is positive. Since —K(0) +p-0 = 0, “f;bc < A7*, and the objective

function is strictly concave, the sender surplus is always strictly positive. So, the sender will

always provide information. The receiver surplus is zero.

3. If ¢ < po + v AT AvgAT* (ie. AJ* € (i, @)), then the sender can obtain the maximum

Vg v

possible payoff by setting (o, fig) = (AT*, 5% A 1)'°| Let pu, = . One
1 Zo AT G s A
T—x ] Ho 1

can verify that (Ao, flo, ) is feasible and satisfies (1 ;) and (£p). We have shown in the proof

of Lemmal[I| that the sender surplus is strictly positive. So, the sender will provide information
and (A, i5) = (A\7", £% A 1). The receiver surplus is a 1 K 1 < 0.
1 Xivg — e, if po > A"

There are two types of iterative signals.

(a) The receiver searches regardless of the signal realization in the first period, and takes action G

(B) after observing a positive (negative) signal in the second period (RHS of Figure {4)).

Denote the information structure in the first period by (Ao, fo,p,). Denote the informa-
tion structure in the second period by (A, i}, ﬁﬁ’) if the receiver observes a positive signal
in the first period, and by (A}, a7, H’f) if the receiver observes a negative signal in the first

. . _ Ao AP _
period. Now consder a one-period strategy (A, i, 1) = (AoA] + (1 —Xo) AT, WHOI——IM)A?HZI +
(I1-X)AT  —p #0*/\0/\71)/1?*(1*)\0))\?/1?)
XN FI AN L TTIAGN — (T a)A
and the beliefs are feasible. We now check the participation constraint. Aj(fg + vp) =

oA + (1 = Ao)AT](h + vp) = Ao (i) + vp) + (1 — Ao)AP(a} + vp) > 2¢ > ¢, where the
first inequality comes from the first-period participation constraint for the iterative signals.
I (ko) = — K (Xp) + pAg
> — MK (A]) = (1= X)) K(AT) + AopAL + (1 — Xo)pAT (convexity of K)
> — K(Xo) + M(=K(A)) +pA\) + (1 = Xo) (=K (A}) + pAY)

One can check that the variables are well-defined

= sender’s payoff using the iterative signals

(b) The receiver searches (takes action B) if the signal is positive (negative) in the first period, and

takes action G (B) if the signal is positive (negative) in the second period (LHS of Figure {4).

M@ The notation a A b means the minimum of @ and b.
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If ¢ > vgAT", or ¢ < vgAT" and pu1 < ¢ — v AT", the expected receiver surplus in the second
period is 0. The receiver incurs search cost without any immediate benefit in the first period under
iterative signals. The expected receiver surplus in the first period is strictly negative if he searches.
Therefore, he will not search, and iterative signals are not feasible. Now we consider the case in

which ¢ < vgAT" and p1 > ¢ — v AT*. The sender’s problem when she uses such iterative signals is:

iter (po) :=max —K (Ao) + Ao [~ K (A\]™) + pATY] (Piter)
_ 14+ A

s.t. Ar(mn +vp) > " O (I Ro,iter)

)\1(/,?1 + Ub) >c (IRl,iter)

(FD. @D, 11 = o, 2 = A

Note that (IRgter) implies (IR{™) and (A}, ii}) = (A}, /(23*) satisfies (F1). Y1 > A7*, the optimal
second-period strategy is always (A}, i) = (A7*,1). Therefore, choosing p1 above AT* does not
increase the second-period sender’s payoff or relax the first-period constraints. So, we can restrict

i1 to be less than or equal to AT*.

) po > ¢ — oA (o) = —K(AT) + AT > Miger (j10)-

i) po < c—upAT*: Iy (po) = —K(B==°) + (Ho—=c)p

—Up —Up

14+ Xo
F) & (IRojter) =X > ———— (=11 > ¢ — pA]” 1
( 1) ( O,zter‘) 0= m —C+Ub)\>(1(*( H1 = )\0 b1 ) ( )
g AT c
> -
vgA* — ¢
0— _
(Fo)j)\ozwﬁﬁ_l/\L )\OSLC**
H1— Ky H1 %c — UpA]* ¢ — UpA]
A necessary condition for Ay to be well-defined is:
_ )\**
- L I L ()

*ok — *ok = *ok
VgAT* — ¢ T ¢ —vpA] VgATF — ¢ vy

Therefore, it is feasible for the sender to provide a one-period signal whenever it is feasible to

provide iterative signals. Define ;e (o) = max  —K(Ao) + Ao [-K (A7) + pAT*]. One
0<Ao< 055,
_ C*'Ub 1
can see that e, (p0) > Iier (o). Let Af(po) :=  argmax  —K(Ag) + Ao [—K(AT*) + pAT*].
0<Ao< NO_i*
— VT emvp AT

We want to show:

Hiter (o) < T (o) & ~K (N (40) + Ni(m0) [= K (N) + AT'] < =K (P2 5) 4+ 52 5p (2)

d
Notice that " {—=K (o) + X0 [—KAT) + AT} = —K'(Mo) — K(AT") + pAT*
0
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Ho—c . t
—opAi* if po < g

:>>‘E<)(:u0) = t
A if >

, where A\ > 0 is defined by —K'(\)) — K(A\}*) +pAf* =0, ph = N(c — vpAt*) + c.
Ao(ko) = ZEie > 257 = =K (A5 (ko)) < —K(257)

When po < p, A5 (po)pAi* = %p}ﬁ{* < ’i“—,j,fp = holds, where
N () K(XF) < 0

the first inequality holds because —wvy > 11 > ¢ — vpAT™.

When po > p, Witer (110) = Witer (1) < i (1) < i (po). So, (2) holds.

Thus, Ty (po) > Higer (o) for any po such that iterative signals are feasible. O

Proof of Lemmal[ll \* and \j* are determined by the first order conditions: —K'(A7*) +p = 0
and —K'(\J") +p+ K(AT*) —pA\i* =0. =K(0)+p-0=0& — K'(A\) +p > 0 for small A\ =
—K(A}*) + pAi* > 0. Therefore, —K'(A\§*) + p + K(A7*) — pA}* = 0 implies that —K'(A\{*) +p >
0= —K'(\) +p,= K' () < K/(AF) = A5 < A —K(0) +p-0+ (1—0) [~K(AF) + pA] >
0 and strict concavity (w.r.t. Ag) of the objective function imply that —K(A§*) + pA§* + (1 —
N KOG + pAp] > 0. .

Proof of Proposition[fl It can be proved in the same way as in the proof of Proposition [I] where

we derive the optimal one-period strategy of the sender. O

Proof of Proposition[5. Road map for the proof:
(1) v A" <c<e
Lemma

!

Lemma
+

optimal two-period strategy

d
optimal strategy
(2) c < vgAT*

(P2s.)): Proposition @ <+ Lemma
(P2s,): Proposition — Lemma — Lemma|§|

i
Comparing one-period and two-period sender’s payoff <+ Lemma & Proposition

Detailed proof:
(1) vgA7* <c<e
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If the sender provides information in both periods, the sender’s constrained program is:

max —K () + pAo + (1 — No) |:—K(C) + Cp] (Porr)

Vg Vg
C
s.t. " nul > ;
g

We first transform (P,y]) into an equivalent program that is easier to analyze.

Lemma 3. Suppose vyA\7* < c<c. If po1 < po < %c, the sender provides information in one

period. If po > %c, (P2p)) is equivalent to:
c c
max —K (M) + pAo + (1 — No) |:—K() + p:| ( éH)

Vg Vg

s.t. A € |—,

c vgto — (1 +vg)c
Vg —VpUg — €

Proof of Lemmal[3 The proof of the equivalence between (Ppy)) and (P;) is similar to that of
Lemma [2] It is feasible for the sender to provide information at both periods if and only if the

domain of A\ is non-empty: i < W;;gi(zzp)c S o > %c. O
g

Denote the optimal Ay without constraints by /\8,*1{- S*H = argmax —K(\g) + pho + (1 —
Ao

o) [—K (%) + %] The following lemma summarizes the relative size of Afy, Aj*, and i
Lemma 4. 0 < Aj7y < A" < i

Proof of Lemmal[f] \i* < o Is the assumption. F.0.C = K'(\§fy) = p+ K(i) — %. From
Lemma K'(\*) =p. —K(£)+ % > 0 when ¢ < ¢ So, K'(A\f%y) < K'(AT") = A\gfy < AT

Vg
—K'(\5') +p+K(£) - % = 0= K'(A\j"y) :p-f—K(i) - % >p— % =(1- i)p > 0, where
the last inequality follows from the assumption that ¢ < vg. Thus, Ag > 0. O

When it is feasible for the sender to provide information in both periods, g > 2(1;‘;)_260, Lemma

[4 and strict concavity of the objective function imply that the optimal two-period strategy of the
sender is (A}, i¢") = (57, 1),t = 0, 1. The sender surplus is (2 — %) [—K(é) +o| > -K(G) +
the sender surplus of the optimal one-period strategy. Therefore, the sender will always provide

information in both periods as long as it is feasible.

(2) c < vgA}*

If the sender provides information in both periods, we first show that we can restrict the
domain of py to be < AJ*. The intuition is that the optimal second-period strategy is always
(A1, m7) = (A7, 1), Yur > Aj*. Therefore, choosing p; above A\}* does not increase the second-
period sender’s payoff or relax the first-period constraints. Formally, when A\7* < 1 < po, the

sender’s constrained program is:
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max —K (Xo) 4+ pAo + (1 — Ao) [~ K (AT + pAL*]
s.t. Ao(fio + vs) + (1= M) [Afvy — d > ¢ (IRy)
(FQ), 1 € [AT", o)

(I~R6) & (FO) N )\0 < —2c+po—p1+vgAT” < po—2c+vpAT* (“:n when 1= X'[*) (FO) = )\0 > uo Ho—p1

VgAT —c—vp—p1  — —vp(1=A]*)—c 1=
HO 11 —2¢+po—pr1+Hvg ™ —2¢+vg AT 4 po[1—vg AT * +c+vp)
The domain of )y is non-empty iff = < T Y 1 < g )

Therefore, smaller ;11 means it is more likely for the domain of Ay to be non-empty and larger upper

bound of A\g. So, the optimal p; will never € (A}*, po). Hence, the optimal strategy in the second

)\**7 /l*l* , 7 c(c—w )\**’)\**
period is (A}, @}) = (A M ) el WA AT and the constrained program of the
(e ) i € [ e - uAY]
entire game is eithe
max —K (Ao) + pAo + (1 — Ao) [-K(AT") + pAT"] (P2sy)

s.t. " , w1 € [C _ Ub)\T*, AT*]
or: max —K (Ao) + pAo + (1 — o) _K(Hl —c)+ (11— c)p o)

—p —p
s.t. - . 1 E C—Ub)\**]

We consider the two programs above separately, and then compare the corresponding local

solutions to pin down the global solution.

1. Sy strategy (solution to (Pg.])

Proposition 9. Suppose ¢ < vgAT* and po < po = 2c—vp\i* —[e+ (L= )vp] AG*. If po > 2¢—

%, (P2s.)) is feasible with the following solution. \j = %,

— )\ . — skok
(o ,‘?O(fgfim)?”b”“ € (—wvp, 1) if pi(po) < c—vpA} O D

1> M1
1 Jf i(po) > ¢ — opAY*

— o 2e—up A —(1 o \E*
11(1o) V¢ — vpAT*, where fii(pg) = =24 c(i;ci:g [ Fv)Ho

surplus in the first period, positive surplus in the second period, and zero total surplus.

upAT* and o >

kk o 1 *

:(1»>\;*)? H1 =

fy =

The receiver gets megative

Proof of Proposition[d We first transform (Pas.]) into an equivalent program that is easier
to analyze.

(2-A{")e

w(=NyFe the

Lemma 5. Suppose ¢ < vgA\7* and pg > poj. If po < 2¢ — vp AT or pg <

sender provides information in one period. If py > 2¢ — vp\i* and po > %, (Pas.)

is equivalent to:

I We include p1 =c—vpAi" in (Pes.|) as well to simplify the exposition.
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max —K (Ao) + pAo + (1 = Ao) [K (A7) + pAT'] (Pys,)

Mo — 2c + Ub)\f*
—up(1 = A7) — ¢

s.t. Ao € <0,

. . 2-\E .
Proof of Lemma[j We first show that, if ug > 2¢ — vpA7* and po > %((1_7;{*))10, (P25, ] is

equivalent to:

max —K (o) + pAo + (1 — Ao) [-K(AT") + pAT"] (Pss,)
_ -2 )\** —
st Ay € [Mo o c+*?:b i o ul]
1—,u,1 —Ub(l—)\l)—c —Vp — U1

1 € [e— ATV (o), AT
2¢ — vpAT* — (1 4 ¢ — vpAT + vp) o
c— vy — o

, where 71 (o) =

_ _ — —2cHvpAT*
(F()) = A = ff(o)—ﬁi (S ILIO_#N;? —#gb—#;l:|' (IR()) & (F()) = A < f'?;b(lfi)\’{i)ic’ For Ay to be
positive, we need po > 2c —vpA\f*. The domain of \g is non-empty iff “10__/71 L< £ gl:(fcj\?i?l_ C
p1 > 1(po). For py < AT*, we need 7 (po) < AJ* < po > 1)9((2%/\1;‘?);: We also have that

p1 = py < po- Thus, the constraints in (Pg.)) imply the constraints in 1}

For any (Ao, 1) satisfying the constraints in 1' consider (Ao, i1, flo = w, =
po—(1=Xo)p1

-

)‘\LTl* ANlp, = “11__#)%?1) (IRo) & (Fp) are satisfied by construction. o = =5 >
—(- - po—(1—5=E)n :
%OAO)“O = po. fip = X (1/\0’\0)“1 < =2 i ~ = 1. One can verify that 1 €

1—py

(—wp, 1], Ky € [0, —vp). Therefore, the (/\o,ﬂlaﬂ(),ﬂl,ﬁl) we constructed satisfies all the
constraints in (Pas.|) and is feasible. Therefore, the two programs are equivalent.

We then show that |D is equivalent to (Pjg |). It is clear that the constraints in 1}

imply the constraints in 1} We now show that for any \g € (0, %} , we can find

. . . . . o —2c+upAT* I
a feasible (Ao, p1) that satisfies the constraints in 1} Since A\g = (=) e maximizes
. . . o —2¢c+vp AT*
the objective function among Ay € (0, Y v
po—2c+vpAT*
—vp(1=A7%)—c

] when po < f1g, we only need to verify

(by construction) that A\g = can be obtained.
B~ ok . L Kok _ o o—2ctopAT* — po—(1-Xo)p1
i) fi1(po) < ¢ —wpAT™: Consider pp = ¢ — vpAT™, Ao = im0 = T X T
(vb—c) (c—vpAT™) —vppo
MO_2C+U[)>\I*

also satisfied. So, we just need to verify that 1o € (p,1). fio < 1 < (vp — ¢)(c — VpATF) —

. By construction, (IRy) and (Fp) are satisfied; p;’s constraints are

Uplo < po — 2¢ + pATF < 1 (o) < ¢ — vp AT, which is the assumption. jip > —vp < ¢ <
—vp(1 — A}¥), which holds because 1o > 2¢ — vpA}* = ¢ < (1o + VpAT*) < po + VAT <
—vp + VpATT = —up(1 — )\’{*)

o~ . . “2cup ATt oo —~
ii) f1(pno) > ¢ — vpAT*: Consider \g = %Mo =lLm = ’ml,i):\%m = u1(po). By

construction, (I Ry) and (Fp) are satisfied; p;’s constraints are also satisfied. So, we just

need to verify that u1 = f1(po) € [e — vp AT, A\i*]. 11 (o) > ¢ — vpAT* is the assumption.
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(2=A")e _
Mozméﬂl(ﬂo) < AT ]

et A _ ) ) —2ctupAt*
When %&?’if_c > Ay (& po > po), the optimal Ag is A5*. When % < Ay,

the optimal A\g is % due to strict concavity of the objective function (denote it
1

by J(XAo)). Since the one-period optimal sender surplus is —K(AJ*) + pAi* = J(0), J(-)
uo—QC-‘r’Ub)\T*
—vp(1=A7%)—c?
J (%) > J(0). So, the sender always provides information in both periods when
(2—A7%)c
vg(l—)\’{*)—i-c)‘
later proofs. According to the proof of Lemma [b| the receiver always gets zero surpluses

o —2¢c+vp AT*
—vp(1-A7%)—c’

which gives the receiver the largest surplus in the first period. So, uj = 11(uo) V ¢ — vpAT™.

(vbic)(civb)‘f*)ivbﬂo . — _ Kok
(Fo) = /:(,* - /1407(17)\0)#1 _ M0726+U5AT* 6 (p7 1) 7Zf lu’l(luo) <c Ub)\l D

0 — Ao . — Kk
1 yif B1(po) = ¢ — Ay

is strictly concave and obtains the unique maximum value at Aj* > we have

it is feasible (o > 2¢ — vpAT* and po > We will use this observation in the

when po < fg. p1 = p1(po) V ¢ — vpAT* is the smallest py that supports A\§ =

. Sp strategy (solution to (Pag,))

Proposition 10. Suppose ¢ < vgAT*. When pg > %c, (Po,)) is feasible. NG, A7, and pj
are continuous and increase in o, while fi and fi] are continuous and decrease in jig, in the
solution to (Pyg |). The receiver gets zero surplus at each period.

Proof of Proposition[10. We first transform (Pag,]) into an equivalent program that is easier
to analyze.

Lemma 6. Suppose ¢ < vgAT*. If po1 < po < %c, the sender provides information in

one period. If pg > %c, (Pas,)) is equivalent to:
g

max —K (Ao) + pAo + (1 — Ao) [—K(”1 —cy m=op (Pso)

—vp —vp
ot A€ |:N0_,U1’NO_.U1—C]
1—p1 —vp—

C Uglpo — C
/’Lle |:7 4 :l
Vg Vg —C

Proof of Lemmal[f. Using the same argument as the proof of Lemma [f] one can show that

(Pss,) is equivalent to:

max —K (X\g) + pAo + (1 — No) [_K(Ml — C) 4 (u1 —c)p ( élso)

st A € [No—m’uo—m—C]
L—p1 " —vp—pm

¢ Vglo — ¢
w1 € [79,% /\c—vb)\i‘*]
vy Vg —cC
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We just need to show that (P ) is equivalent to (Pyg ). If % < c—vpAY*, p1’s constraing
becomes iy € [i, %} So, (Pyg,) is equivalent to (Pyg [). If % > ¢ — AT, denote
the solution to (Pyg ) by (Ao, p11)-

(a)

(b)

(AG", AT*) can be obtained (A = A\J* & p1 = ¢ — wpAT*) in (Pyg, )

€ [i QoPOTE A ¢ — vb)\{*] is equivalent to up € [£ vg“"zc], as the optimal pq under

Vg wg—c Vg vg—
the latter (relaxed) constraint will be ¢ — vpAT*. So, (Pyg,|) is equivalent to (P |-
(AG*, AT*) can not be obtained in (P)g, |
Suppose p1 > ¢ — vpAT*. If Ay > “10__:11, consider (A, = Ao,y = p1 —¢). For small
enough ¢, it is feasible and gives the sender a strictly higher payoff. A contradiction! If
Ao = BHL instead, we have £0=EL > A\** A contradiction!

1 M1 1 1250 0

Therefore, 11 < ¢ — vpA\T* and thus (Pyg |) is equivalent to (Pyg |)-

In sum, (P, is equivalent to (P - -

Lemma 7. Suppose ¢ < vg\[*. For po < o, Ao is binding at the upper bound in the solution

to .

Proof of Lemma[7 To solve (Pyg ), we consider several cases.

i)

Ao < #_0;1)7_1“—10 is binding and p;’s constraints are not binding.

The Lagrangian is £ = —K (o) +pXo+(1—Xo) [—K(u,l;;) + (ul,;;:)p] +n (qujblil;lc — )\0>
st.n>0,n (M —)\0> =0.

—Up—H1

—K'(Ao) +p+ K (1) + ey —

F.0.C. = ) ve N
/ —c vp—C
(1= do) [K(5) - = - i =0
Plug in \g = % Dividing the second equality by ?ﬁ;ﬁ;g and comparing with the

first equality, we obtain:

—c, 1 p
0= —(vp + 1) [K'(’“ ). ]
—up v, Up

—c —c
—Up Up

—c vp + —cC — M1 —cC c
= KPS+ DR (B0 (RS ()

—Up Ub —Up —Up — U1 Up
3%1 [K(“_l;bc) + Ub,:;“lK’(“_l;bC)} = —%K”(“j—;}c) > 0. So, the sum of the first two
terms of the LHS of strictly increases in . % strictly decreases in pq, K'(+)
strictly increases in pp. So, —K'(E-EL=S) strictly increases in pp. Thus, the LHS of

—Up—pi1

strictly increases in p1. When pg increases, the LHS of is strictly negative if p

is unchanged. Therefore, 1 also has to increase. So, the sum of the first two terms of
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the LHS of increases. As a result, the third term, —K'(H2H=¢) = —K'(Xo) has
to decrease strictly. So, Ag has to increase strictly. In sum, the optimal A\g and p; are
strictly increasing in .

i) pup < 7;6 is binding.
When p = 2H0°° )\ € {i} So, \p is binding at the upper bound.

vg—c

i) pp > £ v is binding and Ag is not binding.
The Lagrangian is £ = —K(\g) + pXo + (1 — X\o) [—K(“_l—;bc) + M} +n <,u1 - %)
st.n>0,n <u1 — i) =0.

—K'(Mo) +p+ K(H5) + 1292 — g

F.O.C. = e
(1= 20) [K/(155) - L = 2] 49 =0
The second equality = n = —1= ’\0 [K’(“1 ) —p} C<12AT* — 1= [K'(\t*) — p] = 0. But
—Vp Vp 1 p °

n > 0. A contradiction! So, thls case cannot happen.
iv) up > é is binding and \g > ”10_;“”11 is binding.

The Lagrangian is £ = —K (o) + pXo + (1 — Xo) [—K(@) + M} +1n (,u1 - i) +

vy
¢ (Mot ) stz 0 (- £) = 0,62 0,6 (N - B5) =0

—K'(Ao) +p+ K (1) + IR e — g
F.O0.C. = (o) +p (=) ¢

(1= Xo) [K’(IE—%C)-U%——} 0+ €y =0
Similar to the previous case, the LHS of the second equality > 0. A contradiction!
v) Ao > “10_;:11 is binding and p; is not binding.
The Lagrangian is £ = —K(\g) + pAo+ (1 — Xo) [—K(M) + %} +¢& ()\0 — %)

—Up H1
s.t. §>05(A0—*‘0—j;>:0.

—K'(\ + _|_KM +M+ =0
F.O.C. = (o) +p (7 ) B .

(I—AO)[K’(%).L_7}+§ i

Vp 1—p1)?
Similar to the previous case, the LHS of the second equality > 0. A contradiction!

vi) both Ag and py are not binding.

The solution is the unconstrained optimal solution (A§*, A\7*). But we have assumed that

it is not feasible.
i) to vi) finish the proof of Lemma O

According to Lemma if po > (U SopLa ‘e, is equivalent to:

maX_K(HO_Ml_C)+ HO—M1—0+(1_M0—M1—C) _K(M1—6)+(H1—C)p (PQ/g’O)
—Up — M1 —Up — M1 —Up — M1 —Up —Up
c v —C
st |2 ]
g g
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The first order derivative of the objective function w.r.t. p; is:

o — - —u - — - — —
D(po, 1) =5 {—K(MO H1 c) +p HBo—p1—c¢ (1 o — p1 c) {—K(“l c) 4 (p1 c)p}}
H1 —Ub — M1 —Up — M1 —Ubp — 1 —Up —Vp

Mo+ vy —cC p1—c Vp + H1 .y M1 —C s MO — 1 —C cp
= + K -K(———)—- =
(1 + vp)? { ( —vp ) Up ( —vp ) ( —Vp — 1 vb]

The first term of D (g, i1), Z‘Z;ﬁf gb‘); , is always strictly negative. The second term, K (£ j;bc) +

bl por(sey | (Mo-timcy P g the LHS of (), which has been shown to be strictly

Up —Up —Vp—H1 vy’

increasing in 1 in the proof of Lemma [7} One can see that D(ug, 1) is strictly negative
when gy is large. Thus, D(uo, p1) is always negative or positive for py small and negative
for p1 large. Let pi*(uo) be the cutoff value such that D(ug,p1) > 0 for p; < pi*(po) and
D(po, 1) < 0 for pp > pi* (o) (13" (po) = —oo if D(up, 1) is always negative). Since

b € [i’ v%;gm_:c:|7 the optimal pj(uo) = {é VNT*(MO)} A % One can see that we

£ if D(pg, p1) is always negative
can define fii*(ug) = { 0 1 PO ) IS ANINEBANE (e to0) and
wi* (o), otherwise

wi(po) = [i ke (,uo)} A %. Since fi7*(po) is continuous in pg, p(1o) is also continuous

in po. It then implies that Aj(uo) = %, A (po) = %22_0, and i (po) = %

are continuous in pg.

We have shown in the proof of Lemma (7| that A\§ and p] strictly increase in pg when pj

C

is the interior solution. Now we consider the case when p; is binding. When uj = v

C
%« _ Mo—pi—c “O_@_c . . . x _ Ugo—C .. - . . .
Ay = T e strictly increases in pg. When pj = Tog—c it is strictly increasing
i
. - —C . . . . .
in po and A\ = % = .= is constant. Together with the continuity property we just
1 g

established, we have shown that A\§ and pf (weakly) increase in po. Thus, A} =

— * .
increases in o and g} = N’fl_vb (weakly) decreases in pyg. O
1

pi—c
o

(weakly)

C

According to the proof of Proposition[I]and Lemmal6] the sender does not provide information
iff 19 < po,1 and provide information in one period if pg1 < po < %C. Thus, we just
need to determine whether she provides information in one period or in both periods when

o > %c by comparing the sender surplus of the optimal one-period strategy and the

optimal sender surplus of the Sy strategy.

(a) ¢ < vgA§*: Define py9 := inf{py > %c : IIs,(po) > IIi(po)}. One can see that

2vg—

pi2 € [W);c,ﬁﬁ) and Ig, (p1,2) > 111 (p1,2). According to Lemma

Mo —C Mo —C

Iy (ko) = — K( AAT) +( AAT)
—Up —Up
ITs, (ko) :maX*K(iuo — P C) +p Fo—/m—t +01- ST [K(ul — C) + b —c)p
H1 —Up — M1 —Uy — M1 —Uyp — M1 —Ub —Up
sty € {c, W]
'Ug vg — C
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i) p12 > c— AT Vo € (p1,2, fio]s sy (10) > Mgy (p1,2) > Tl (p1,2) = Ty (o).
dTly (po) _ K/(,uo—C) 1 _ p

dpo —vp vy vp”

i) g2 <e—vpAT™: Vao € [p1,2, ¢ — vpAT"),

Al pa(po) = pi(po) == %: In this case, \g = % = &
)

So, s, (o) = ~K (&) + 2+ (1 — &)[-K (M=) 4 Wil op)

For A > 0 small enough, we have po + 96 < ¢ — »pAJ*, V¥ € (0,A). Consider
to,s = po + 6 € (po, o + A), we have g, (p0,5) > I, (p0,6) == _K(i) + % +
(1— L)[_K(Wf(ﬂo,é)—c) 4 i ros)=cp

Vg —vp —vp

]. Noticing that Ils,(po) = ILg,(p0), we

have

dllsy (o) . MLsy (10)

_K,(Mf(uo) —c)l _p _ dili(p)
dpo

dpo —vp U p dpo

So, Ig,(po) > i (1o), Yo € [p1,2, ¢ — vpAT*), and the inequality is strict when
Mo > 1,2

B. pi(po) < p¥(po): Let Ao = % For A > 0 small enough, we have

po+ 08 < c— ATt and p(po) + =2 < (ko) < pi(po +6), V8 € (0,4),
po+8— (1 (no) + 155 ) —¢
o )+ o)
o m(uo)-&-ﬁ—c

have ITg, (p0,6) > L, (p0,5) := —K (o) + pro + (1 — Ao)[—K(

Consider pos = po + 6 € (po, po + A). Since = Ao, We

)+

P
5, __
(ul(uo)tib_m )p}. Noticing that IIg,(p0) = ILs, (10), We have
dllg, _
dlls, (ko) > 15, (0) —(1—= o) _}K/(,Ul(uo) c) 1 n 1
dpo dpo P jZ I-X 1-2Xo
1 }K/(Nl(ﬂo) —€
p p
1 iy -
p p
dIl
> 1 (ko)
dpio

So, IIs, (o) > 1 (1o) and the inequality is strict when pg > p1 2.
In sum, g, (o) > (o), Yo € (1,2, fol-

(b) vgA§* < ¢ < vgA7*: The following lemma provides a closed-form solution to program
(P2s,)) when the search cost is intermediate:

Lemma 8. Suppose vg\* < ¢ < vgAT". A\j = i,,uf = % in the solution to (Pagy)).

Proof of Lemma[8 According to the proof of Proposition [0} Aj is binding at the upper
bound and increases in pg in the solution to (Pyg |), for ¢ < v A7*. One can see that
Ao = o and pj = ¢ — vyAT* for o large enough in the solution to (Pyg ). Because

Vg

Cc

Ay > i, the only way for A\§ to be increasing in pg is for it to always be v Given
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C

Ay = e the optimal uj = vfl’}’; 0= for (PJg ). Lemma |§| shows that (Pyg |) is equivalent

to (Pas,)). So, A = i,/f{ = % are also the solutions to (Pag,)). O
2vg—c

Define p19 := inf{ug > Uvg ¢ : Mg, (o) > I (po) or Sy strategy is feasible}. Note
that p12 < po 4. If the Si strategy is feasible Vug > pi1,2, the 1-period sender surplus
will always be dominated by the 2-period sender surplus Vg > p1,2, as the optimal S
strategy generates a strictly higher sender surplus than the optimal 1-period strategy.
We now consider the case in which the S strategy is not feasible for some pg > p1 2,
which implies that ITg,(p1,2) > II; (p1,2)-

—c *x —C *%
HI(MO) - K(MO_'Ub A >\1 ) +p('u0_1)b A )\1 )
I, (o) = — K(i) + 2 (1— ﬁ) _K(M(Mo) - C) + (11 (o) — c)p
Yg Yg Ug —Up —Up

1) p12 > c—upAf*: Yo € (p1,2, po,+], sy (o) > Mg, (p1,2) = i (p1,2) = I (ko).
i) pi2 <c—upAT*: Yo € [p2, ¢ — mpATY,

dHI(MO) :K,(/'I/O - C)i _ p

dpg —Up Vb U
dILs, (po) :K,(u%(ﬂo) - c)i _p _ dilip)
dpio vy vy v dpio

So, g, (o) > II; (po) and the inequality is strict when g > p1.2. Ig, (¢ — vpAT*) >
I (¢ — vpAT*). Yo € [ — pAT*, o +], gy (o) > g, (¢ — vpAT*) > I (¢ — vpAT*) =
1Ty (ko)
In sum, V,UO € (M1,27M2,+]> HSO (//LO) > HI(MO)
One can see that the optimal S strategy always generates a strictly higher (and strictly pos-

itive) sender surplus than the optimal 1-period strategy. Therefore, the sender always provides

information in both periods when the S, strategy is feasibleﬁ By Lemma |5 the S, strategy is

feasible iff p19 > 2¢ — vpA7* and pp > % when ¢ < vyAT*. Hence, together with the above
1
. 2ug—c (2=X1*)e
results on the Sy strategy, there exists p112 € [(1)970, 2¢c —vpAT* V W} such that the sender

does not provide information if pp < po,1, provides information in one period if pg € [po,1, f1,2),

and provides information in both periods if p19 > p1 2. L]

T Byt the optimal 2-period strategy may be either S or the Sy strategy.
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